Airborne-radar and ice-core observations of snow accumulation in West Antarctica

Thesis (Ph.D.)--University of Washington, 2013 The world's ice sheets store enough water to raise global eustatic sea level by several tens of meters, and therefore, any fluctuations in their size will cause sea level to rise or fall. The net mass exchanged with the ocean - defined as the mass...

Full description

Bibliographic Details
Main Author: Medley, Brooke
Other Authors: Joughin, Ian R
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/1773/25012
Description
Summary:Thesis (Ph.D.)--University of Washington, 2013 The world's ice sheets store enough water to raise global eustatic sea level by several tens of meters, and therefore, any fluctuations in their size will cause sea level to rise or fall. The net mass exchanged with the ocean - defined as the mass balance - determines the glacial contribution to sea level and is the difference in snow accumulated in the interior and ice discharged into the ocean at the ice sheet periphery. While new techniques in remotely acquired surface velocities lead to improved discharge measurements, snow accumulation remains unmeasured over much of the of the ice sheet. This work aims to improve our understanding of snow accumulation over two of the most rapidly evolving glaciers in Antarctica: Pine Island and Thwaites. Specifically, we use two airborne radar systems to image and track the near-surface internal stratigraphy to measure snow accumulation rates over both glaciers. This method allows for investigation of the spatial and temporal variations in accumulation at the catchment-scale, which is essential for determining glacier mass balance. Examination of the radar-derived accumulation rates over Pine Island and Thwaites glaciers revealed several results including: (1) accumulation exhibited no significant trend between 1980 and 2009, (2) the sea-level contribution from Pine Island and Thwaites tripled from +0.09 mm yr -1 in the mid-1990s to +0.27 mm yr -1 by 2010, (3) a shift towards higher accumulation occurred between 1944-1984 and 1985-2009, observed in both ice core and radar records, and (4) atmospheric models are an adequate replacement for accumulation measurements in areas with few observations. These findings indicate that accumulation is not concurrently compensating the enhanced ice discharge from the region, and as a result, the sea-level contribution from these glaciers is increasing. Furthermore, a recent shift towards higher mean accumulation suggests these glaciers might have been out of balance earlier than ...