Consequences of ocean change for ecological function:Observational and modeling case studies of larval echinoderms

Thesis (Ph.D.)--University of Washington, 2012 Planktonic larvae of many marine invertebrates play important roles in connecting and sustaining disjunct adult populations. Most larvae are denser than seawater and rely on swimming to regulate their vertical positions. Because environmental variables...

Full description

Bibliographic Details
Main Author: Chan, Kit Yu Karen
Other Authors: Grünbaum, Daniel
Format: Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1773/21853
id ftunivwashington:oai:digital.lib.washington.edu:1773/21853
record_format openpolar
spelling ftunivwashington:oai:digital.lib.washington.edu:1773/21853 2023-05-15T17:51:43+02:00 Consequences of ocean change for ecological function:Observational and modeling case studies of larval echinoderms Chan, Kit Yu Karen Grünbaum, Daniel 2012 application/pdf http://hdl.handle.net/1773/21853 en_US eng Chan_washington_0250E_10823.pdf http://hdl.handle.net/1773/21853 Copyright is held by the individual authors. Biological oceanography Oceanography Thesis 2012 ftunivwashington 2023-03-12T18:50:12Z Thesis (Ph.D.)--University of Washington, 2012 Planktonic larvae of many marine invertebrates play important roles in connecting and sustaining disjunct adult populations. Most larvae are denser than seawater and rely on swimming to regulate their vertical positions. Because environmental variables including direction and strength of advective currents and prey and predator concentrations vary with depth, larval swimming behaviors can significantly impact larval survival and transport. Quantification of larval movement is therefore essential for understanding population dynamics, especially in the face of global climate change because of the need to predict possible shifts in ecosystems. Larval swimming is physically constrained by their morphologies, which are often complex and highly variable. Behavioral responses to surrounding environmental variables modulate the actual swimming performance within physical limits. This study took a two-pronged approach to understand larval swimming through 1) quantifying larval behaviors under changing environmental conditions and 2) modeling larval morphology-flow interactions. This study applied novel non-invasive video motion analysis techniques to quantify effects of environmental variations. Ocean acidification is considered one of the major threats to marine ecosystems and larvae are suggested to be particularly vulnerable. When reared under elevated pCO 2 level, larval sand dollars Dendraster excentricus maintained their swimming performance but had lower feeding success. By combining feeding and respiration experiments with motion analysis, we observed similar tradeoffs among larval purple urchins, Strongylocentrotus purpuratus , and heart urchins, Brissopsis lyrifera . These two echinoids also underwent budding under acidified conditions, an asexual reproduction strategy that has not been previously reported. These results suggest that sublethal OA impacts could be carried over from planktonic stages to later development stages and affect population dynamics. ... Thesis Ocean acidification University of Washington, Seattle: ResearchWorks
institution Open Polar
collection University of Washington, Seattle: ResearchWorks
op_collection_id ftunivwashington
language English
topic Biological oceanography
Oceanography
spellingShingle Biological oceanography
Oceanography
Chan, Kit Yu Karen
Consequences of ocean change for ecological function:Observational and modeling case studies of larval echinoderms
topic_facet Biological oceanography
Oceanography
description Thesis (Ph.D.)--University of Washington, 2012 Planktonic larvae of many marine invertebrates play important roles in connecting and sustaining disjunct adult populations. Most larvae are denser than seawater and rely on swimming to regulate their vertical positions. Because environmental variables including direction and strength of advective currents and prey and predator concentrations vary with depth, larval swimming behaviors can significantly impact larval survival and transport. Quantification of larval movement is therefore essential for understanding population dynamics, especially in the face of global climate change because of the need to predict possible shifts in ecosystems. Larval swimming is physically constrained by their morphologies, which are often complex and highly variable. Behavioral responses to surrounding environmental variables modulate the actual swimming performance within physical limits. This study took a two-pronged approach to understand larval swimming through 1) quantifying larval behaviors under changing environmental conditions and 2) modeling larval morphology-flow interactions. This study applied novel non-invasive video motion analysis techniques to quantify effects of environmental variations. Ocean acidification is considered one of the major threats to marine ecosystems and larvae are suggested to be particularly vulnerable. When reared under elevated pCO 2 level, larval sand dollars Dendraster excentricus maintained their swimming performance but had lower feeding success. By combining feeding and respiration experiments with motion analysis, we observed similar tradeoffs among larval purple urchins, Strongylocentrotus purpuratus , and heart urchins, Brissopsis lyrifera . These two echinoids also underwent budding under acidified conditions, an asexual reproduction strategy that has not been previously reported. These results suggest that sublethal OA impacts could be carried over from planktonic stages to later development stages and affect population dynamics. ...
author2 Grünbaum, Daniel
format Thesis
author Chan, Kit Yu Karen
author_facet Chan, Kit Yu Karen
author_sort Chan, Kit Yu Karen
title Consequences of ocean change for ecological function:Observational and modeling case studies of larval echinoderms
title_short Consequences of ocean change for ecological function:Observational and modeling case studies of larval echinoderms
title_full Consequences of ocean change for ecological function:Observational and modeling case studies of larval echinoderms
title_fullStr Consequences of ocean change for ecological function:Observational and modeling case studies of larval echinoderms
title_full_unstemmed Consequences of ocean change for ecological function:Observational and modeling case studies of larval echinoderms
title_sort consequences of ocean change for ecological function:observational and modeling case studies of larval echinoderms
publishDate 2012
url http://hdl.handle.net/1773/21853
genre Ocean acidification
genre_facet Ocean acidification
op_relation Chan_washington_0250E_10823.pdf
http://hdl.handle.net/1773/21853
op_rights Copyright is held by the individual authors.
_version_ 1766158959028207616