Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic

Antarctica, with its almost pristine conditions and relatively simple vegetation, offers excellent opportunities to investigate the influence of environmental factors on species performance, such information being crucial if the effects of possible climate change are to be understood. Antarctic vege...

Full description

Bibliographic Details
Published in:Oecologia
Main Authors: Schlensog, Mark, Green, T.G. Allan, Schroeter, Burkhard
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2013
Subjects:
Online Access:https://hdl.handle.net/10289/7382
https://doi.org/10.1007/s00442-013-2608-9
id ftunivwaikato:oai:researchcommons.waikato.ac.nz:10289/7382
record_format openpolar
spelling ftunivwaikato:oai:researchcommons.waikato.ac.nz:10289/7382 2023-05-15T14:00:59+02:00 Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic Schlensog, Mark Green, T.G. Allan Schroeter, Burkhard 2013 https://hdl.handle.net/10289/7382 https://doi.org/10.1007/s00442-013-2608-9 en eng Springer Oecologia Schlensog, M., Green, T. G. A., & Schroeter, B. (2013). Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic. Oecologia, first published online February 2013. 0029-8549 https://hdl.handle.net/10289/7382 doi:10.1007/s00442-013-2608-9 Antarctica Chlorophyll fluorescence Climate change Lichens Monitoring Mosses Water regime Journal Article 2013 ftunivwaikato https://doi.org/10.1007/s00442-013-2608-9 2022-03-29T15:12:55Z Antarctica, with its almost pristine conditions and relatively simple vegetation, offers excellent opportunities to investigate the influence of environmental factors on species performance, such information being crucial if the effects of possible climate change are to be understood. Antarctic vegetation is mainly cryptogamic. Cryptogams are poikilohydric and are only metabolically and photosynthetically active when hydrated. Activity patterns of the main life forms present, bryophytes (10 species, ecto- and endohydric), lichens (5 species) and phanerogams (2 species), were monitored for 21 days using chlorophyll a fluorescence as an indicator of metabolic activity and, therefore, of water regime at a mesic (hydration by meltwater) and a xeric (hydration by precipitation) site on Léonie Island/West Antarctic Peninsula (67°36′S). Length of activity depended mainly on site and form of hydration. Plants at the mesic site that were hydrated by meltwater were active for long periods, up to 100 % of the measurement period, whilst activity was much shorter at the xeric site where hydration was entirely by precipitation. There were also differences due to life form, with phanerogams and mesic bryophytes being most active and lichens generally much less so. The length of the active period for lichens was longer than in continental Antarctica but shorter than in the more northern Antarctic Peninsula. Light intensity when hydrated was positively related to the length of the active period. High activity species were strongly coupled to the incident light whilst low activity species were active under lower light levels and essentially uncoupled from incident light. Temperatures were little different between sites and also almost identical to temperatures, when active, for lichens in continental and peninsular Antarctica. Gradients in vegetation cover and growth rates across Antarctica are, therefore, not likely to be due to differences in temperature but more likely to the length of the hydrated (active) period. The strong effect on activity of the mode of hydration and the life form, plus the uncoupling from incident light for less active species, all make modelling of vegetation change with climate a more difficult exercise Article in Journal/Newspaper Antarc* Antarctic Antarctic Peninsula Antarctica Léonie Island The University of Waikato: Research Commons Antarctic Antarctic Peninsula Léonie ENVELOPE(-68.350,-68.350,-67.600,-67.600) Léonie Island ENVELOPE(-68.346,-68.346,-67.602,-67.602) Oecologia 173 1 59 72
institution Open Polar
collection The University of Waikato: Research Commons
op_collection_id ftunivwaikato
language English
topic Antarctica
Chlorophyll fluorescence
Climate change
Lichens
Monitoring
Mosses
Water regime
spellingShingle Antarctica
Chlorophyll fluorescence
Climate change
Lichens
Monitoring
Mosses
Water regime
Schlensog, Mark
Green, T.G. Allan
Schroeter, Burkhard
Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic
topic_facet Antarctica
Chlorophyll fluorescence
Climate change
Lichens
Monitoring
Mosses
Water regime
description Antarctica, with its almost pristine conditions and relatively simple vegetation, offers excellent opportunities to investigate the influence of environmental factors on species performance, such information being crucial if the effects of possible climate change are to be understood. Antarctic vegetation is mainly cryptogamic. Cryptogams are poikilohydric and are only metabolically and photosynthetically active when hydrated. Activity patterns of the main life forms present, bryophytes (10 species, ecto- and endohydric), lichens (5 species) and phanerogams (2 species), were monitored for 21 days using chlorophyll a fluorescence as an indicator of metabolic activity and, therefore, of water regime at a mesic (hydration by meltwater) and a xeric (hydration by precipitation) site on Léonie Island/West Antarctic Peninsula (67°36′S). Length of activity depended mainly on site and form of hydration. Plants at the mesic site that were hydrated by meltwater were active for long periods, up to 100 % of the measurement period, whilst activity was much shorter at the xeric site where hydration was entirely by precipitation. There were also differences due to life form, with phanerogams and mesic bryophytes being most active and lichens generally much less so. The length of the active period for lichens was longer than in continental Antarctica but shorter than in the more northern Antarctic Peninsula. Light intensity when hydrated was positively related to the length of the active period. High activity species were strongly coupled to the incident light whilst low activity species were active under lower light levels and essentially uncoupled from incident light. Temperatures were little different between sites and also almost identical to temperatures, when active, for lichens in continental and peninsular Antarctica. Gradients in vegetation cover and growth rates across Antarctica are, therefore, not likely to be due to differences in temperature but more likely to the length of the hydrated (active) period. The strong effect on activity of the mode of hydration and the life form, plus the uncoupling from incident light for less active species, all make modelling of vegetation change with climate a more difficult exercise
format Article in Journal/Newspaper
author Schlensog, Mark
Green, T.G. Allan
Schroeter, Burkhard
author_facet Schlensog, Mark
Green, T.G. Allan
Schroeter, Burkhard
author_sort Schlensog, Mark
title Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic
title_short Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic
title_full Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic
title_fullStr Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic
title_full_unstemmed Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic
title_sort life form and water source interact to determine active time and environment in cryptogams: an example from the maritime antarctic
publisher Springer
publishDate 2013
url https://hdl.handle.net/10289/7382
https://doi.org/10.1007/s00442-013-2608-9
long_lat ENVELOPE(-68.350,-68.350,-67.600,-67.600)
ENVELOPE(-68.346,-68.346,-67.602,-67.602)
geographic Antarctic
Antarctic Peninsula
Léonie
Léonie Island
geographic_facet Antarctic
Antarctic Peninsula
Léonie
Léonie Island
genre Antarc*
Antarctic
Antarctic Peninsula
Antarctica
Léonie Island
genre_facet Antarc*
Antarctic
Antarctic Peninsula
Antarctica
Léonie Island
op_relation Oecologia
Schlensog, M., Green, T. G. A., & Schroeter, B. (2013). Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic. Oecologia, first published online February 2013.
0029-8549
https://hdl.handle.net/10289/7382
doi:10.1007/s00442-013-2608-9
op_doi https://doi.org/10.1007/s00442-013-2608-9
container_title Oecologia
container_volume 173
container_issue 1
container_start_page 59
op_container_end_page 72
_version_ 1766270391867670528