Biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation

The global potential distribution of biomes (natural vegetation) was modelled using 8,959 training points from the BIOME 6000 dataset and a stack of 72 environmental covariates representing terrain and the current climatic conditions based on historical long term averages (1979–2013). An ensemble ma...

Full description

Bibliographic Details
Published in:PeerJ
Main Authors: Bonannella, Carmelo, Hengl, Tomislav, Parente, Leandro, de Bruin, Sytze
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://research.wur.nl/en/publications/biomes-of-the-world-under-climate-change-scenarios-increasing-ari
https://doi.org/10.7717/peerj.15593
id ftunivwagenin:oai:library.wur.nl:wurpubs/616307
record_format openpolar
spelling ftunivwagenin:oai:library.wur.nl:wurpubs/616307 2024-04-28T08:12:00+00:00 Biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation Bonannella, Carmelo Hengl, Tomislav Parente, Leandro de Bruin, Sytze 2023 application/pdf https://research.wur.nl/en/publications/biomes-of-the-world-under-climate-change-scenarios-increasing-ari https://doi.org/10.7717/peerj.15593 en eng https://edepot.wur.nl/633588 https://research.wur.nl/en/publications/biomes-of-the-world-under-climate-change-scenarios-increasing-ari doi:10.7717/peerj.15593 https://creativecommons.org/licenses/by/4.0/ Wageningen University & Research PeerJ 11 (2023) ISSN: 2167-8359 Life Science Article/Letter to editor 2023 ftunivwagenin https://doi.org/10.7717/peerj.15593 2024-04-03T14:34:17Z The global potential distribution of biomes (natural vegetation) was modelled using 8,959 training points from the BIOME 6000 dataset and a stack of 72 environmental covariates representing terrain and the current climatic conditions based on historical long term averages (1979–2013). An ensemble machine learning model based on stacked regularization was used, with multinomial logistic regression as the meta-learner and spatial blocking (100 km) to deal with spatial autocorrelation of the training points. Results of spatial cross-validation for the BIOME 6000 classes show an overall accuracy of 0.67 and R2logloss of 0.61, with “tropical evergreen broadleaf forest” being the class with highest gain in predictive performances (R2logloss = 0.74) and “prostrate dwarf shrub tundra” the class with the lowest (R2logloss = −0.09) compared to the baseline. Temperature-related covariates were the most important predictors, with the mean diurnal range (BIO2) being shared by all the base-learners (i.e.,random forest, gradient boosted trees and generalized linear models). The model was next used to predict the distribution of future biomes for the periods 2040–2060 and 2061–2080 under three climate change scenarios (RCP 2.6, 4.5 and 8.5). Comparisons of predictions for the three epochs (present, 2040–2060 and 2061–2080) show that increasing aridity and higher temperatures will likely result in significant shifts in natural vegetation in the tropical area (shifts from tropical forests to savannas up to 1.7 ×105 km2 by 2080) and around the Arctic Circle (shifts from tundra to boreal forests up to 2.4 ×105 km2 by 2080). Projected global maps at 1 km spatial resolution are provided as probability and hard classes maps for BIOME 6000 classes and as hard classes maps for the IUCN classes (six aggregated classes). Uncertainty maps (prediction error) are also provided and should be used for careful interpretation of the future projections. Article in Journal/Newspaper Arctic Climate change Tundra Wageningen UR (University & Research Centre): Digital Library PeerJ 11 e15593
institution Open Polar
collection Wageningen UR (University & Research Centre): Digital Library
op_collection_id ftunivwagenin
language English
topic Life Science
spellingShingle Life Science
Bonannella, Carmelo
Hengl, Tomislav
Parente, Leandro
de Bruin, Sytze
Biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation
topic_facet Life Science
description The global potential distribution of biomes (natural vegetation) was modelled using 8,959 training points from the BIOME 6000 dataset and a stack of 72 environmental covariates representing terrain and the current climatic conditions based on historical long term averages (1979–2013). An ensemble machine learning model based on stacked regularization was used, with multinomial logistic regression as the meta-learner and spatial blocking (100 km) to deal with spatial autocorrelation of the training points. Results of spatial cross-validation for the BIOME 6000 classes show an overall accuracy of 0.67 and R2logloss of 0.61, with “tropical evergreen broadleaf forest” being the class with highest gain in predictive performances (R2logloss = 0.74) and “prostrate dwarf shrub tundra” the class with the lowest (R2logloss = −0.09) compared to the baseline. Temperature-related covariates were the most important predictors, with the mean diurnal range (BIO2) being shared by all the base-learners (i.e.,random forest, gradient boosted trees and generalized linear models). The model was next used to predict the distribution of future biomes for the periods 2040–2060 and 2061–2080 under three climate change scenarios (RCP 2.6, 4.5 and 8.5). Comparisons of predictions for the three epochs (present, 2040–2060 and 2061–2080) show that increasing aridity and higher temperatures will likely result in significant shifts in natural vegetation in the tropical area (shifts from tropical forests to savannas up to 1.7 ×105 km2 by 2080) and around the Arctic Circle (shifts from tundra to boreal forests up to 2.4 ×105 km2 by 2080). Projected global maps at 1 km spatial resolution are provided as probability and hard classes maps for BIOME 6000 classes and as hard classes maps for the IUCN classes (six aggregated classes). Uncertainty maps (prediction error) are also provided and should be used for careful interpretation of the future projections.
format Article in Journal/Newspaper
author Bonannella, Carmelo
Hengl, Tomislav
Parente, Leandro
de Bruin, Sytze
author_facet Bonannella, Carmelo
Hengl, Tomislav
Parente, Leandro
de Bruin, Sytze
author_sort Bonannella, Carmelo
title Biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation
title_short Biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation
title_full Biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation
title_fullStr Biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation
title_full_unstemmed Biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation
title_sort biomes of the world under climate change scenarios : increasing aridity and higher temperatures lead to significant shifts in natural vegetation
publishDate 2023
url https://research.wur.nl/en/publications/biomes-of-the-world-under-climate-change-scenarios-increasing-ari
https://doi.org/10.7717/peerj.15593
genre Arctic
Climate change
Tundra
genre_facet Arctic
Climate change
Tundra
op_source PeerJ 11 (2023)
ISSN: 2167-8359
op_relation https://edepot.wur.nl/633588
https://research.wur.nl/en/publications/biomes-of-the-world-under-climate-change-scenarios-increasing-ari
doi:10.7717/peerj.15593
op_rights https://creativecommons.org/licenses/by/4.0/
Wageningen University & Research
op_doi https://doi.org/10.7717/peerj.15593
container_title PeerJ
container_volume 11
container_start_page e15593
_version_ 1797579099962605568