Growing fresh food on future space missions : Environmental conditions and crop management

This paper deals with vegetable cultivation that could be faced in a space mission. This paper focusses on optimization, light, temperature and the harvesting process, while other factors concerning cultivation in space missions, i.e. gravity, radiation, were not addressed. It describes the work don...

Full description

Bibliographic Details
Published in:Scientia Horticulturae
Main Authors: Meinen, Esther, Dueck, Tom, Kempkes, Frank, Stanghellini, Cecilia
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:https://research.wur.nl/en/publications/growing-fresh-food-on-future-space-missions-environmental-conditi
https://doi.org/10.1016/j.scienta.2018.03.002
id ftunivwagenin:oai:library.wur.nl:wurpubs/535918
record_format openpolar
spelling ftunivwagenin:oai:library.wur.nl:wurpubs/535918 2024-04-28T07:57:33+00:00 Growing fresh food on future space missions : Environmental conditions and crop management Meinen, Esther Dueck, Tom Kempkes, Frank Stanghellini, Cecilia 2018 application/pdf https://research.wur.nl/en/publications/growing-fresh-food-on-future-space-missions-environmental-conditi https://doi.org/10.1016/j.scienta.2018.03.002 en eng https://edepot.wur.nl/445013 https://research.wur.nl/en/publications/growing-fresh-food-on-future-space-missions-environmental-conditi doi:10.1016/j.scienta.2018.03.002 https://creativecommons.org/licenses/by-nc-nd/4.0/ Wageningen University & Research Scientia Horticulturae 235 (2018) ISSN: 0304-4238 Antarctic EDEN ISS LED lighting Resource use efficiency Spread harvesting Article/Letter to editor 2018 ftunivwagenin https://doi.org/10.1016/j.scienta.2018.03.002 2024-04-03T15:20:23Z This paper deals with vegetable cultivation that could be faced in a space mission. This paper focusses on optimization, light, temperature and the harvesting process, while other factors concerning cultivation in space missions, i.e. gravity, radiation, were not addressed. It describes the work done in preparation of the deployment of a mobile test facility for vegetable production of fresh food at the Neumayer III Antarctic research station. A selection of vegetable crops was grown under varying light and temperature conditions to quantify crop yield response to climate factors that determine resource requirement of the production system. Crops were grown at 21 °C or 25 °C under light treatments varying from 200 to 600 μmol m−2 s−1 and simulated the dusk and dawn light spectrum. Fresh food biomass was harvested as spread harvesting (lettuce), before and after regrowth (herbs) and at the end of cultivation. Lettuce and red mustard responded well to increasing light intensities, by 35–90% with increasing light from 200 to 600 μmol m−2 s−1, while the other crops responded more variably. However, the quality of the leafy greens often deteriorated at higher light intensities. The fruit biomass of both determinate tomato and cucumber increased by 8–15% from 300 to 600 μmol m−2 s−1. With the increase in biomass, the number of tomato fruits also increased, while the number of cucumber fruits decreased, resulting in heavier individual fruits. Increasing the temperature had varied effects on production. While in some cases the production increased, regrowth of herbs often lagged behind in the 25 °C treatment. In terms of fresh food production, the most can be expected from lettuce, cucumber, radish, then tomato, although the 2 fruit vegetables require a considerable amount of crop management. Spread harvesting had a large influence on the amount of harvested biomass per unit area. In particular, yield of the 3 lettuce cultivars and spinach was ca. 400% than single harvesting. Increasing plant density and applying spread ... Article in Journal/Newspaper Antarc* Antarctic Wageningen UR (University & Research Centre): Digital Library Scientia Horticulturae 235 270 278
institution Open Polar
collection Wageningen UR (University & Research Centre): Digital Library
op_collection_id ftunivwagenin
language English
topic Antarctic
EDEN ISS
LED lighting
Resource use efficiency
Spread harvesting
spellingShingle Antarctic
EDEN ISS
LED lighting
Resource use efficiency
Spread harvesting
Meinen, Esther
Dueck, Tom
Kempkes, Frank
Stanghellini, Cecilia
Growing fresh food on future space missions : Environmental conditions and crop management
topic_facet Antarctic
EDEN ISS
LED lighting
Resource use efficiency
Spread harvesting
description This paper deals with vegetable cultivation that could be faced in a space mission. This paper focusses on optimization, light, temperature and the harvesting process, while other factors concerning cultivation in space missions, i.e. gravity, radiation, were not addressed. It describes the work done in preparation of the deployment of a mobile test facility for vegetable production of fresh food at the Neumayer III Antarctic research station. A selection of vegetable crops was grown under varying light and temperature conditions to quantify crop yield response to climate factors that determine resource requirement of the production system. Crops were grown at 21 °C or 25 °C under light treatments varying from 200 to 600 μmol m−2 s−1 and simulated the dusk and dawn light spectrum. Fresh food biomass was harvested as spread harvesting (lettuce), before and after regrowth (herbs) and at the end of cultivation. Lettuce and red mustard responded well to increasing light intensities, by 35–90% with increasing light from 200 to 600 μmol m−2 s−1, while the other crops responded more variably. However, the quality of the leafy greens often deteriorated at higher light intensities. The fruit biomass of both determinate tomato and cucumber increased by 8–15% from 300 to 600 μmol m−2 s−1. With the increase in biomass, the number of tomato fruits also increased, while the number of cucumber fruits decreased, resulting in heavier individual fruits. Increasing the temperature had varied effects on production. While in some cases the production increased, regrowth of herbs often lagged behind in the 25 °C treatment. In terms of fresh food production, the most can be expected from lettuce, cucumber, radish, then tomato, although the 2 fruit vegetables require a considerable amount of crop management. Spread harvesting had a large influence on the amount of harvested biomass per unit area. In particular, yield of the 3 lettuce cultivars and spinach was ca. 400% than single harvesting. Increasing plant density and applying spread ...
format Article in Journal/Newspaper
author Meinen, Esther
Dueck, Tom
Kempkes, Frank
Stanghellini, Cecilia
author_facet Meinen, Esther
Dueck, Tom
Kempkes, Frank
Stanghellini, Cecilia
author_sort Meinen, Esther
title Growing fresh food on future space missions : Environmental conditions and crop management
title_short Growing fresh food on future space missions : Environmental conditions and crop management
title_full Growing fresh food on future space missions : Environmental conditions and crop management
title_fullStr Growing fresh food on future space missions : Environmental conditions and crop management
title_full_unstemmed Growing fresh food on future space missions : Environmental conditions and crop management
title_sort growing fresh food on future space missions : environmental conditions and crop management
publishDate 2018
url https://research.wur.nl/en/publications/growing-fresh-food-on-future-space-missions-environmental-conditi
https://doi.org/10.1016/j.scienta.2018.03.002
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source Scientia Horticulturae 235 (2018)
ISSN: 0304-4238
op_relation https://edepot.wur.nl/445013
https://research.wur.nl/en/publications/growing-fresh-food-on-future-space-missions-environmental-conditi
doi:10.1016/j.scienta.2018.03.002
op_rights https://creativecommons.org/licenses/by-nc-nd/4.0/
Wageningen University & Research
op_doi https://doi.org/10.1016/j.scienta.2018.03.002
container_title Scientia Horticulturae
container_volume 235
container_start_page 270
op_container_end_page 278
_version_ 1797589213340762112