Coordinated responses of soil communities to elevation in three subarctic vegetation types
Global warming has begun to have a major impact on the species composition and functioning of plant and soil communities. However, long-term community and ecosystem responses to increased temperature are still poorly understood. In this study, we used a well-established elevational gradient in north...
Published in: | Oikos |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://research.wur.nl/en/publications/coordinated-responses-of-soil-communities-to-elevation-in-three-s https://doi.org/10.1111/oik.04158 |
id |
ftunivwagenin:oai:library.wur.nl:wurpubs/523269 |
---|---|
record_format |
openpolar |
spelling |
ftunivwagenin:oai:library.wur.nl:wurpubs/523269 2024-02-11T10:07:11+01:00 Coordinated responses of soil communities to elevation in three subarctic vegetation types Veen, Ciska G.F. De Long, Jonathan R. Kardol, P. Sundqvist, Maja Snoek, L.B. Wardle, D.A. 2017 application/pdf https://research.wur.nl/en/publications/coordinated-responses-of-soil-communities-to-elevation-in-three-s https://doi.org/10.1111/oik.04158 en eng https://edepot.wur.nl/417659 https://research.wur.nl/en/publications/coordinated-responses-of-soil-communities-to-elevation-in-three-s doi:10.1111/oik.04158 Wageningen University & Research Oikos 126 (2017) 11 ISSN: 0030-1299 Life Science Article/Letter to editor 2017 ftunivwagenin https://doi.org/10.1111/oik.04158 2024-01-24T23:17:20Z Global warming has begun to have a major impact on the species composition and functioning of plant and soil communities. However, long-term community and ecosystem responses to increased temperature are still poorly understood. In this study, we used a well-established elevational gradient in northern Sweden to elucidate how plant, microbial and nematode communities shift with elevation and associated changes in temperature in three highly contrasting vegetation types (i.e. heath, meadow and Salix vegetation). We found that responses of both the abundance and composition of microbial and nematode communities to elevation differed greatly among the vegetation types. Within vegetation types, changes with elevation of plant, microbial and nematode communities were mostly linked at fine levels of taxonomic resolution, but this pattern disappeared when coarser functional group levels were considered. Further, nematode communities shifted towards more conservative nutrient cycling strategies with increasing elevation in heath and meadow vegetation. Conversely, in Salix vegetation microbial communities with conservative strategies were most pronounced at the mid-elevation. These results provide limited support for increasing conservative nutrient cycling strategies at higher elevation (i.e. with a harsher climate). Our findings indicate that climate-induced changes in plant community composition may greatly modify or counteract the impact of climate change on soil communities. Therefore, to better understand and predict ecosystem responses to climate change, it will be crucial to consider vegetation type and its specific interactions with soil communities Article in Journal/Newspaper Northern Sweden Subarctic Wageningen UR (University & Research Centre): Digital Library Oikos 126 11 1586 1599 |
institution |
Open Polar |
collection |
Wageningen UR (University & Research Centre): Digital Library |
op_collection_id |
ftunivwagenin |
language |
English |
topic |
Life Science |
spellingShingle |
Life Science Veen, Ciska G.F. De Long, Jonathan R. Kardol, P. Sundqvist, Maja Snoek, L.B. Wardle, D.A. Coordinated responses of soil communities to elevation in three subarctic vegetation types |
topic_facet |
Life Science |
description |
Global warming has begun to have a major impact on the species composition and functioning of plant and soil communities. However, long-term community and ecosystem responses to increased temperature are still poorly understood. In this study, we used a well-established elevational gradient in northern Sweden to elucidate how plant, microbial and nematode communities shift with elevation and associated changes in temperature in three highly contrasting vegetation types (i.e. heath, meadow and Salix vegetation). We found that responses of both the abundance and composition of microbial and nematode communities to elevation differed greatly among the vegetation types. Within vegetation types, changes with elevation of plant, microbial and nematode communities were mostly linked at fine levels of taxonomic resolution, but this pattern disappeared when coarser functional group levels were considered. Further, nematode communities shifted towards more conservative nutrient cycling strategies with increasing elevation in heath and meadow vegetation. Conversely, in Salix vegetation microbial communities with conservative strategies were most pronounced at the mid-elevation. These results provide limited support for increasing conservative nutrient cycling strategies at higher elevation (i.e. with a harsher climate). Our findings indicate that climate-induced changes in plant community composition may greatly modify or counteract the impact of climate change on soil communities. Therefore, to better understand and predict ecosystem responses to climate change, it will be crucial to consider vegetation type and its specific interactions with soil communities |
format |
Article in Journal/Newspaper |
author |
Veen, Ciska G.F. De Long, Jonathan R. Kardol, P. Sundqvist, Maja Snoek, L.B. Wardle, D.A. |
author_facet |
Veen, Ciska G.F. De Long, Jonathan R. Kardol, P. Sundqvist, Maja Snoek, L.B. Wardle, D.A. |
author_sort |
Veen, Ciska G.F. |
title |
Coordinated responses of soil communities to elevation in three subarctic vegetation types |
title_short |
Coordinated responses of soil communities to elevation in three subarctic vegetation types |
title_full |
Coordinated responses of soil communities to elevation in three subarctic vegetation types |
title_fullStr |
Coordinated responses of soil communities to elevation in three subarctic vegetation types |
title_full_unstemmed |
Coordinated responses of soil communities to elevation in three subarctic vegetation types |
title_sort |
coordinated responses of soil communities to elevation in three subarctic vegetation types |
publishDate |
2017 |
url |
https://research.wur.nl/en/publications/coordinated-responses-of-soil-communities-to-elevation-in-three-s https://doi.org/10.1111/oik.04158 |
genre |
Northern Sweden Subarctic |
genre_facet |
Northern Sweden Subarctic |
op_source |
Oikos 126 (2017) 11 ISSN: 0030-1299 |
op_relation |
https://edepot.wur.nl/417659 https://research.wur.nl/en/publications/coordinated-responses-of-soil-communities-to-elevation-in-three-s doi:10.1111/oik.04158 |
op_rights |
Wageningen University & Research |
op_doi |
https://doi.org/10.1111/oik.04158 |
container_title |
Oikos |
container_volume |
126 |
container_issue |
11 |
container_start_page |
1586 |
op_container_end_page |
1599 |
_version_ |
1790605337748832256 |