Snow cover manipulation effects on microbial community structure and soil chemistry in a mountain bog

Background and Aims Alterations in snow cover driven by climate change may impact ecosystem functioning, including biogeochemistry and soil (microbial) processes. We elucidated the effects of snow cover manipulation (SCM) on above-and belowground processes in a temperate peatland. Methods In a Swiss...

Full description

Bibliographic Details
Published in:Plant and Soil
Main Authors: Robroek, B.J.M., Heijboer, A., Jassey, V.E.J., Hefting, M.M., Rouwenhorst, T.G., Buttler, A., Bragazza, L.
Format: Article in Journal/Newspaper
Language:English
Published: 2013
Subjects:
Online Access:https://research.wur.nl/en/publications/snow-cover-manipulation-effects-on-microbial-community-structure-
https://doi.org/10.1007/s11104-012-1547-2
Description
Summary:Background and Aims Alterations in snow cover driven by climate change may impact ecosystem functioning, including biogeochemistry and soil (microbial) processes. We elucidated the effects of snow cover manipulation (SCM) on above-and belowground processes in a temperate peatland. Methods In a Swiss mountain-peatland we manipulated snow cover (addition, removal and control), and assessed the effects on Andromeda polifolia root enzyme activity, soil microbial community structure, and leaf tissue and soil biogeochemistry. Results Reduced snow cover produced warmer soils in our experiment while increased snow cover kept soil temperatures close-to-freezing. SCM had a major influence on the microbial community, and prolonged ‘close-to-freezing’ temperatures caused a shift in microbial communities toward fungal dominance. Soil temperature largely explained soil microbial structure, while other descriptors such as root enzyme activity and pore-water chemistry interacted less with the soil microbial communities. Conclusions We envisage that SCM-driven changes in the microbial community composition could lead to substantial changes in trophic fluxes and associated ecosystem processes. Hence, we need to improve our understanding on the impact of frost and freeze-thaw cycles on the microbial food web and its implications for peatland ecosystem processes in a changing climate; in particular for the fate of the sequestered carbon.