Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling:Fixed nitrogen and dry deposition of phosphorus

Atmospheric nitrogen inputs to the ocean are estimated to have increased by up to a factor of three as a result of increased anthropogenic emissions over the last 150 years, with further increases expected in the short- to mid-term at least. Such estimates are largely based on emissions and atmosphe...

Full description

Bibliographic Details
Published in:Global Biogeochemical Cycles
Main Authors: Baker, A.R., Lesworth, T., Adams, C., Jickells, T.D., Ganzeveld, L.N.
Format: Article in Journal/Newspaper
Language:English
Published: 2010
Subjects:
Online Access:https://research.wur.nl/en/publications/estimation-of-atmospheric-nutrient-inputs-to-the-atlantic-ocean-f-2
https://doi.org/10.1029/2009GB003634
id ftunivwagenin:oai:library.wur.nl:wurpubs/393509
record_format openpolar
spelling ftunivwagenin:oai:library.wur.nl:wurpubs/393509 2024-01-14T10:09:12+01:00 Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling:Fixed nitrogen and dry deposition of phosphorus Baker, A.R. Lesworth, T. Adams, C. Jickells, T.D. Ganzeveld, L.N. 2010 application/pdf https://research.wur.nl/en/publications/estimation-of-atmospheric-nutrient-inputs-to-the-atlantic-ocean-f-2 https://doi.org/10.1029/2009GB003634 en eng https://edepot.wur.nl/143661 https://research.wur.nl/en/publications/estimation-of-atmospheric-nutrient-inputs-to-the-atlantic-ocean-f-2 doi:10.1029/2009GB003634 info:eu-repo/semantics/openAccess Wageningen University & Research Global Biogeochemical Cycles 24 (2010) ISSN: 0886-6236 aerosol boundary-layer chemistry model organic nitrogen precipitation south atlantic transport western north-atlantic world ocean info:eu-repo/semantics/article Article/Letter to editor info:eu-repo/semantics/publishedVersion 2010 ftunivwagenin https://doi.org/10.1029/2009GB003634 2023-12-20T23:19:07Z Atmospheric nitrogen inputs to the ocean are estimated to have increased by up to a factor of three as a result of increased anthropogenic emissions over the last 150 years, with further increases expected in the short- to mid-term at least. Such estimates are largely based on emissions and atmospheric transport modeling, because, apart from a few island sites, there is very little observational data available for atmospheric nitrogen concentrations over the remote ocean. Here we use samples of rainwater and aerosol we obtained during 12 long-transect cruises across the Atlantic Ocean between 50°N and 50°S as the basis for a climatological estimate of nitrogen inputs to the basin. The climatology is for the 5 years 2001–2005, during which almost all of the cruises took place, and includes dry and wet deposition of nitrate and ammonium explicitly, together with a more uncertain estimate of soluble organic nitrogen deposition. Our results indicate that nitrogen inputs into the region were ~850–1420 Gmol (12–20 Tg) N yr-1, with ~78–85% of this in the form of wet deposition. Inputs were greater in the Northern Hemisphere and in wet regions, and wet regions had a greater proportion of input via wet deposition. The largest uncertainty in our estimate of dry inputs is associated with variability in deposition velocities, while the largest uncertainty in our wet nitrogen input estimate is due to the limited amount and uneven geographic distribution of observational data. We also estimate a lower limit of dry deposition of phosphate to be ~0.19 Gmol P yr-1, using data from the same cruises. We compare our results to several recent estimates of N and P deposition to the Atlantic and discuss the likely sources of uncertainty, such as the potential seasonal bias introduced by our sampling, on our climatology Article in Journal/Newspaper North Atlantic Wageningen UR (University & Research Centre): Digital Library Global Biogeochemical Cycles 24 3 n/a n/a
institution Open Polar
collection Wageningen UR (University & Research Centre): Digital Library
op_collection_id ftunivwagenin
language English
topic aerosol
boundary-layer
chemistry
model
organic nitrogen
precipitation
south atlantic
transport
western north-atlantic
world ocean
spellingShingle aerosol
boundary-layer
chemistry
model
organic nitrogen
precipitation
south atlantic
transport
western north-atlantic
world ocean
Baker, A.R.
Lesworth, T.
Adams, C.
Jickells, T.D.
Ganzeveld, L.N.
Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling:Fixed nitrogen and dry deposition of phosphorus
topic_facet aerosol
boundary-layer
chemistry
model
organic nitrogen
precipitation
south atlantic
transport
western north-atlantic
world ocean
description Atmospheric nitrogen inputs to the ocean are estimated to have increased by up to a factor of three as a result of increased anthropogenic emissions over the last 150 years, with further increases expected in the short- to mid-term at least. Such estimates are largely based on emissions and atmospheric transport modeling, because, apart from a few island sites, there is very little observational data available for atmospheric nitrogen concentrations over the remote ocean. Here we use samples of rainwater and aerosol we obtained during 12 long-transect cruises across the Atlantic Ocean between 50°N and 50°S as the basis for a climatological estimate of nitrogen inputs to the basin. The climatology is for the 5 years 2001–2005, during which almost all of the cruises took place, and includes dry and wet deposition of nitrate and ammonium explicitly, together with a more uncertain estimate of soluble organic nitrogen deposition. Our results indicate that nitrogen inputs into the region were ~850–1420 Gmol (12–20 Tg) N yr-1, with ~78–85% of this in the form of wet deposition. Inputs were greater in the Northern Hemisphere and in wet regions, and wet regions had a greater proportion of input via wet deposition. The largest uncertainty in our estimate of dry inputs is associated with variability in deposition velocities, while the largest uncertainty in our wet nitrogen input estimate is due to the limited amount and uneven geographic distribution of observational data. We also estimate a lower limit of dry deposition of phosphate to be ~0.19 Gmol P yr-1, using data from the same cruises. We compare our results to several recent estimates of N and P deposition to the Atlantic and discuss the likely sources of uncertainty, such as the potential seasonal bias introduced by our sampling, on our climatology
format Article in Journal/Newspaper
author Baker, A.R.
Lesworth, T.
Adams, C.
Jickells, T.D.
Ganzeveld, L.N.
author_facet Baker, A.R.
Lesworth, T.
Adams, C.
Jickells, T.D.
Ganzeveld, L.N.
author_sort Baker, A.R.
title Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling:Fixed nitrogen and dry deposition of phosphorus
title_short Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling:Fixed nitrogen and dry deposition of phosphorus
title_full Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling:Fixed nitrogen and dry deposition of phosphorus
title_fullStr Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling:Fixed nitrogen and dry deposition of phosphorus
title_full_unstemmed Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling:Fixed nitrogen and dry deposition of phosphorus
title_sort estimation of atmospheric nutrient inputs to the atlantic ocean from 50°n to 50°s based on large-scale field sampling:fixed nitrogen and dry deposition of phosphorus
publishDate 2010
url https://research.wur.nl/en/publications/estimation-of-atmospheric-nutrient-inputs-to-the-atlantic-ocean-f-2
https://doi.org/10.1029/2009GB003634
genre North Atlantic
genre_facet North Atlantic
op_source Global Biogeochemical Cycles 24 (2010)
ISSN: 0886-6236
op_relation https://edepot.wur.nl/143661
https://research.wur.nl/en/publications/estimation-of-atmospheric-nutrient-inputs-to-the-atlantic-ocean-f-2
doi:10.1029/2009GB003634
op_rights info:eu-repo/semantics/openAccess
Wageningen University & Research
op_doi https://doi.org/10.1029/2009GB003634
container_title Global Biogeochemical Cycles
container_volume 24
container_issue 3
container_start_page n/a
op_container_end_page n/a
_version_ 1788063680604143616