A data-driven model for Fennoscandian wildfire danger

Wildfires are recurrent natural hazards that affect terrestrial ecosystems, the carbon cycle, climate and society. They are typically hard to predict, as their exact location and occurrence are driven by a variety of factors. Identifying a selection of dominant controls can ultimately improve predic...

Full description

Bibliographic Details
Main Authors: Bakke, Sigrid Jørgensen, Wanders, Niko, Van Der Wiel, Karin, Tallaksen, Lena Merete
Other Authors: Landdegradatie en aardobservatie, Landscape functioning, Geocomputation and Hydrology
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/428481
id ftunivutrecht:oai:dspace.library.uu.nl:1874/428481
record_format openpolar
spelling ftunivutrecht:oai:dspace.library.uu.nl:1874/428481 2023-11-12T04:17:02+01:00 A data-driven model for Fennoscandian wildfire danger Bakke, Sigrid Jørgensen Wanders, Niko Van Der Wiel, Karin Tallaksen, Lena Merete Landdegradatie en aardobservatie Landscape functioning, Geocomputation and Hydrology 2023-01-12 application/pdf https://dspace.library.uu.nl/handle/1874/428481 en eng 1561-8633 https://dspace.library.uu.nl/handle/1874/428481 info:eu-repo/semantics/OpenAccess Fire-weather Burned area Climate-change Forest-fires Index Vegetation Satellite Sensitivity Risk Earth and Planetary Sciences(all) Article 2023 ftunivutrecht 2023-11-01T23:30:27Z Wildfires are recurrent natural hazards that affect terrestrial ecosystems, the carbon cycle, climate and society. They are typically hard to predict, as their exact location and occurrence are driven by a variety of factors. Identifying a selection of dominant controls can ultimately improve predictions and projections of wildfires in both the current and a future climate. Data-driven models are suitable for identification of dominant factors of complex and partly unknown processes and can both help improve process-based models and work as independent models. In this study, we applied a data-driven machine learning approach to identify dominant hydrometeorological factors determining fire occurrence over Fennoscandia and produced spatiotemporally resolved fire danger probability maps. A random forest learner was applied to predict fire danger probabilities over space and time, using a monthly (2001-2019) satellite-based fire occurrence dataset at a 0.25° spatial grid as the target variable. The final data-driven model slightly outperformed the established Canadian Forest Fire Weather Index (FWI) used for comparison. Half of the 30 potential predictors included in the study were automatically selected for the model. Shallow volumetric soil water anomaly stood out as the dominant predictor, followed by predictors related to temperature and deep volumetric soil water. Using a local fire occurrence record for Norway as target data in a separate analysis, the test set performance increased considerably. This demonstrates the potential of developing reliable data-driven models for regions with a high-quality fire occurrence record and the limitation of using satellite-based fire occurrence data in regions subject to small fires not identified by satellites. We conclude that data-driven fire danger probability models are promising, both as a tool to identify the dominant predictors and for fire danger probability mapping. The derived relationships between wildfires and the selected predictors can further be used to ... Article in Journal/Newspaper Fennoscandia Fennoscandian Utrecht University Repository Norway
institution Open Polar
collection Utrecht University Repository
op_collection_id ftunivutrecht
language English
topic Fire-weather
Burned area
Climate-change
Forest-fires
Index
Vegetation
Satellite
Sensitivity
Risk
Earth and Planetary Sciences(all)
spellingShingle Fire-weather
Burned area
Climate-change
Forest-fires
Index
Vegetation
Satellite
Sensitivity
Risk
Earth and Planetary Sciences(all)
Bakke, Sigrid Jørgensen
Wanders, Niko
Van Der Wiel, Karin
Tallaksen, Lena Merete
A data-driven model for Fennoscandian wildfire danger
topic_facet Fire-weather
Burned area
Climate-change
Forest-fires
Index
Vegetation
Satellite
Sensitivity
Risk
Earth and Planetary Sciences(all)
description Wildfires are recurrent natural hazards that affect terrestrial ecosystems, the carbon cycle, climate and society. They are typically hard to predict, as their exact location and occurrence are driven by a variety of factors. Identifying a selection of dominant controls can ultimately improve predictions and projections of wildfires in both the current and a future climate. Data-driven models are suitable for identification of dominant factors of complex and partly unknown processes and can both help improve process-based models and work as independent models. In this study, we applied a data-driven machine learning approach to identify dominant hydrometeorological factors determining fire occurrence over Fennoscandia and produced spatiotemporally resolved fire danger probability maps. A random forest learner was applied to predict fire danger probabilities over space and time, using a monthly (2001-2019) satellite-based fire occurrence dataset at a 0.25° spatial grid as the target variable. The final data-driven model slightly outperformed the established Canadian Forest Fire Weather Index (FWI) used for comparison. Half of the 30 potential predictors included in the study were automatically selected for the model. Shallow volumetric soil water anomaly stood out as the dominant predictor, followed by predictors related to temperature and deep volumetric soil water. Using a local fire occurrence record for Norway as target data in a separate analysis, the test set performance increased considerably. This demonstrates the potential of developing reliable data-driven models for regions with a high-quality fire occurrence record and the limitation of using satellite-based fire occurrence data in regions subject to small fires not identified by satellites. We conclude that data-driven fire danger probability models are promising, both as a tool to identify the dominant predictors and for fire danger probability mapping. The derived relationships between wildfires and the selected predictors can further be used to ...
author2 Landdegradatie en aardobservatie
Landscape functioning, Geocomputation and Hydrology
format Article in Journal/Newspaper
author Bakke, Sigrid Jørgensen
Wanders, Niko
Van Der Wiel, Karin
Tallaksen, Lena Merete
author_facet Bakke, Sigrid Jørgensen
Wanders, Niko
Van Der Wiel, Karin
Tallaksen, Lena Merete
author_sort Bakke, Sigrid Jørgensen
title A data-driven model for Fennoscandian wildfire danger
title_short A data-driven model for Fennoscandian wildfire danger
title_full A data-driven model for Fennoscandian wildfire danger
title_fullStr A data-driven model for Fennoscandian wildfire danger
title_full_unstemmed A data-driven model for Fennoscandian wildfire danger
title_sort data-driven model for fennoscandian wildfire danger
publishDate 2023
url https://dspace.library.uu.nl/handle/1874/428481
geographic Norway
geographic_facet Norway
genre Fennoscandia
Fennoscandian
genre_facet Fennoscandia
Fennoscandian
op_relation 1561-8633
https://dspace.library.uu.nl/handle/1874/428481
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1782334032807198720