The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6
The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marin...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://dspace.library.uu.nl/handle/1874/409211 |
id |
ftunivutrecht:oai:dspace.library.uu.nl:1874/409211 |
---|---|
record_format |
openpolar |
spelling |
ftunivutrecht:oai:dspace.library.uu.nl:1874/409211 2023-11-12T04:13:57+01:00 The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6 Goelzer, Heiko Nowicki, Sophie Payne, Anthony Larour, Eric Seroussi, Helene Lipscomb, William H. Gregory, Jonathan Abe-Ouchi, Ayako Shepherd, Andrew Simon, Erika Agosta, Cécile Alexander, Patrick Aschwanden, Andy Barthel, Alice Calov, Reinhard Chambers, Christopher Choi, Youngmin Cuzzone, Joshua Dumas, Christophe Edwards, Tamsin Felikson, Denis Fettweis, Xavier Golledge, Nicholas R. Greve, Ralf Humbert, Angelika Huybrechts, Philippe Le clec'h, Sebastien Lee, Victoria Leguy, Gunter Little, Chris Lowry, Daniel P. Morlighem, Mathieu Nias, Isabel Quiquet, Aurelien Rückamp, Martin Schlegel, Nicole-Jeanne Slater, Donald A. Smith, Robin S. Straneo, Fiamma Tarasov, Lev van de Wal, Roderik van den Broeke, Michiel Marine and Atmospheric Research Sub Dynamics Meteorology Proceskunde Sub Algemeen Marine & Atmospheric Res 2020-09-17 application/pdf https://dspace.library.uu.nl/handle/1874/409211 en eng 1994-0416 https://dspace.library.uu.nl/handle/1874/409211 info:eu-repo/semantics/OpenAccess Article 2020 ftunivutrecht 2023-11-01T23:24:25Z The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90±50 and 32±17 mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. Article in Journal/Newspaper Arctic Greenland Ice Sheet Utrecht University Repository Arctic Greenland |
institution |
Open Polar |
collection |
Utrecht University Repository |
op_collection_id |
ftunivutrecht |
language |
English |
description |
The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90±50 and 32±17 mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. |
author2 |
Marine and Atmospheric Research Sub Dynamics Meteorology Proceskunde Sub Algemeen Marine & Atmospheric Res |
format |
Article in Journal/Newspaper |
author |
Goelzer, Heiko Nowicki, Sophie Payne, Anthony Larour, Eric Seroussi, Helene Lipscomb, William H. Gregory, Jonathan Abe-Ouchi, Ayako Shepherd, Andrew Simon, Erika Agosta, Cécile Alexander, Patrick Aschwanden, Andy Barthel, Alice Calov, Reinhard Chambers, Christopher Choi, Youngmin Cuzzone, Joshua Dumas, Christophe Edwards, Tamsin Felikson, Denis Fettweis, Xavier Golledge, Nicholas R. Greve, Ralf Humbert, Angelika Huybrechts, Philippe Le clec'h, Sebastien Lee, Victoria Leguy, Gunter Little, Chris Lowry, Daniel P. Morlighem, Mathieu Nias, Isabel Quiquet, Aurelien Rückamp, Martin Schlegel, Nicole-Jeanne Slater, Donald A. Smith, Robin S. Straneo, Fiamma Tarasov, Lev van de Wal, Roderik van den Broeke, Michiel |
spellingShingle |
Goelzer, Heiko Nowicki, Sophie Payne, Anthony Larour, Eric Seroussi, Helene Lipscomb, William H. Gregory, Jonathan Abe-Ouchi, Ayako Shepherd, Andrew Simon, Erika Agosta, Cécile Alexander, Patrick Aschwanden, Andy Barthel, Alice Calov, Reinhard Chambers, Christopher Choi, Youngmin Cuzzone, Joshua Dumas, Christophe Edwards, Tamsin Felikson, Denis Fettweis, Xavier Golledge, Nicholas R. Greve, Ralf Humbert, Angelika Huybrechts, Philippe Le clec'h, Sebastien Lee, Victoria Leguy, Gunter Little, Chris Lowry, Daniel P. Morlighem, Mathieu Nias, Isabel Quiquet, Aurelien Rückamp, Martin Schlegel, Nicole-Jeanne Slater, Donald A. Smith, Robin S. Straneo, Fiamma Tarasov, Lev van de Wal, Roderik van den Broeke, Michiel The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6 |
author_facet |
Goelzer, Heiko Nowicki, Sophie Payne, Anthony Larour, Eric Seroussi, Helene Lipscomb, William H. Gregory, Jonathan Abe-Ouchi, Ayako Shepherd, Andrew Simon, Erika Agosta, Cécile Alexander, Patrick Aschwanden, Andy Barthel, Alice Calov, Reinhard Chambers, Christopher Choi, Youngmin Cuzzone, Joshua Dumas, Christophe Edwards, Tamsin Felikson, Denis Fettweis, Xavier Golledge, Nicholas R. Greve, Ralf Humbert, Angelika Huybrechts, Philippe Le clec'h, Sebastien Lee, Victoria Leguy, Gunter Little, Chris Lowry, Daniel P. Morlighem, Mathieu Nias, Isabel Quiquet, Aurelien Rückamp, Martin Schlegel, Nicole-Jeanne Slater, Donald A. Smith, Robin S. Straneo, Fiamma Tarasov, Lev van de Wal, Roderik van den Broeke, Michiel |
author_sort |
Goelzer, Heiko |
title |
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6 |
title_short |
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6 |
title_full |
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6 |
title_fullStr |
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6 |
title_full_unstemmed |
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6 |
title_sort |
future sea-level contribution of the greenland ice sheet: a multi-model ensemble study of ismip6 |
publishDate |
2020 |
url |
https://dspace.library.uu.nl/handle/1874/409211 |
geographic |
Arctic Greenland |
geographic_facet |
Arctic Greenland |
genre |
Arctic Greenland Ice Sheet |
genre_facet |
Arctic Greenland Ice Sheet |
op_relation |
1994-0416 https://dspace.library.uu.nl/handle/1874/409211 |
op_rights |
info:eu-repo/semantics/OpenAccess |
_version_ |
1782331714565046272 |