Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (...

Full description

Bibliographic Details
Main Authors: Turney, Chris S. M., Fogwill, Christopher J., Golledge, Nicholas R., McKay, Nicholas P., van Sebille, Erik, Jones, Richard T., Etheridge, David, Rubino, Mauro, Thornton, David P., Davies, Siwan M., Ramsey, Christopher Bronk, Thomas, Zoe A., Bird, Michael I., Munksgaard, Niels C., Kohno, Mika, Woodward, John, Winter, Kate, Weyrich, Laura S., Rootes, Camilla M., Millman, Helen, Albert, Paul G., Rivera, Andres, van Ommen, Tas, Curran, Mark, Moy, Andrew, Rahmstorf, Stefan, Kawamura, Kenji, Hillenbrand, Claus-Dieter, Weber, Michael E., Manning, Christina J., Young, Jennifer, Cooper, Alan
Other Authors: Sub Physical Oceanography, Marine and Atmospheric Research
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/395075
id ftunivutrecht:oai:dspace.library.uu.nl:1874/395075
record_format openpolar
spelling ftunivutrecht:oai:dspace.library.uu.nl:1874/395075 2023-12-03T10:12:25+01:00 Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica Turney, Chris S. M. Fogwill, Christopher J. Golledge, Nicholas R. McKay, Nicholas P. van Sebille, Erik Jones, Richard T. Etheridge, David Rubino, Mauro Thornton, David P. Davies, Siwan M. Ramsey, Christopher Bronk Thomas, Zoe A. Bird, Michael I. Munksgaard, Niels C. Kohno, Mika Woodward, John Winter, Kate Weyrich, Laura S. Rootes, Camilla M. Millman, Helen Albert, Paul G. Rivera, Andres van Ommen, Tas Curran, Mark Moy, Andrew Rahmstorf, Stefan Kawamura, Kenji Hillenbrand, Claus-Dieter Weber, Michael E. Manning, Christina J. Young, Jennifer Cooper, Alan Sub Physical Oceanography Marine and Atmospheric Research 2020-02-25 image/pdf https://dspace.library.uu.nl/handle/1874/395075 en eng 0027-8424 https://dspace.library.uu.nl/handle/1874/395075 info:eu-repo/semantics/OpenAccess Antarctic ice sheets marine ice sheet instability (MISI) paleoclimatology polar amplification tipping element Article 2020 ftunivutrecht 2023-11-08T23:17:40Z The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming. Article in Journal/Newspaper Antarc* Antarctic Antarctica Greenland Ice Sheet Methane hydrate North Atlantic Southern Ocean Weddell Sea Utrecht University Repository Antarctic Greenland Misi ENVELOPE(26.683,26.683,66.617,66.617) Southern Ocean The Antarctic Weddell Weddell Sea West Antarctic Ice Sheet
institution Open Polar
collection Utrecht University Repository
op_collection_id ftunivutrecht
language English
topic Antarctic ice sheets
marine ice sheet instability (MISI)
paleoclimatology
polar amplification
tipping element
spellingShingle Antarctic ice sheets
marine ice sheet instability (MISI)
paleoclimatology
polar amplification
tipping element
Turney, Chris S. M.
Fogwill, Christopher J.
Golledge, Nicholas R.
McKay, Nicholas P.
van Sebille, Erik
Jones, Richard T.
Etheridge, David
Rubino, Mauro
Thornton, David P.
Davies, Siwan M.
Ramsey, Christopher Bronk
Thomas, Zoe A.
Bird, Michael I.
Munksgaard, Niels C.
Kohno, Mika
Woodward, John
Winter, Kate
Weyrich, Laura S.
Rootes, Camilla M.
Millman, Helen
Albert, Paul G.
Rivera, Andres
van Ommen, Tas
Curran, Mark
Moy, Andrew
Rahmstorf, Stefan
Kawamura, Kenji
Hillenbrand, Claus-Dieter
Weber, Michael E.
Manning, Christina J.
Young, Jennifer
Cooper, Alan
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica
topic_facet Antarctic ice sheets
marine ice sheet instability (MISI)
paleoclimatology
polar amplification
tipping element
description The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming.
author2 Sub Physical Oceanography
Marine and Atmospheric Research
format Article in Journal/Newspaper
author Turney, Chris S. M.
Fogwill, Christopher J.
Golledge, Nicholas R.
McKay, Nicholas P.
van Sebille, Erik
Jones, Richard T.
Etheridge, David
Rubino, Mauro
Thornton, David P.
Davies, Siwan M.
Ramsey, Christopher Bronk
Thomas, Zoe A.
Bird, Michael I.
Munksgaard, Niels C.
Kohno, Mika
Woodward, John
Winter, Kate
Weyrich, Laura S.
Rootes, Camilla M.
Millman, Helen
Albert, Paul G.
Rivera, Andres
van Ommen, Tas
Curran, Mark
Moy, Andrew
Rahmstorf, Stefan
Kawamura, Kenji
Hillenbrand, Claus-Dieter
Weber, Michael E.
Manning, Christina J.
Young, Jennifer
Cooper, Alan
author_facet Turney, Chris S. M.
Fogwill, Christopher J.
Golledge, Nicholas R.
McKay, Nicholas P.
van Sebille, Erik
Jones, Richard T.
Etheridge, David
Rubino, Mauro
Thornton, David P.
Davies, Siwan M.
Ramsey, Christopher Bronk
Thomas, Zoe A.
Bird, Michael I.
Munksgaard, Niels C.
Kohno, Mika
Woodward, John
Winter, Kate
Weyrich, Laura S.
Rootes, Camilla M.
Millman, Helen
Albert, Paul G.
Rivera, Andres
van Ommen, Tas
Curran, Mark
Moy, Andrew
Rahmstorf, Stefan
Kawamura, Kenji
Hillenbrand, Claus-Dieter
Weber, Michael E.
Manning, Christina J.
Young, Jennifer
Cooper, Alan
author_sort Turney, Chris S. M.
title Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica
title_short Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica
title_full Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica
title_fullStr Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica
title_full_unstemmed Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica
title_sort early last interglacial ocean warming drove substantial ice mass loss from antarctica
publishDate 2020
url https://dspace.library.uu.nl/handle/1874/395075
long_lat ENVELOPE(26.683,26.683,66.617,66.617)
geographic Antarctic
Greenland
Misi
Southern Ocean
The Antarctic
Weddell
Weddell Sea
West Antarctic Ice Sheet
geographic_facet Antarctic
Greenland
Misi
Southern Ocean
The Antarctic
Weddell
Weddell Sea
West Antarctic Ice Sheet
genre Antarc*
Antarctic
Antarctica
Greenland
Ice Sheet
Methane hydrate
North Atlantic
Southern Ocean
Weddell Sea
genre_facet Antarc*
Antarctic
Antarctica
Greenland
Ice Sheet
Methane hydrate
North Atlantic
Southern Ocean
Weddell Sea
op_relation 0027-8424
https://dspace.library.uu.nl/handle/1874/395075
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1784258996433059840