Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica
The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://dspace.library.uu.nl/handle/1874/395075 |
id |
ftunivutrecht:oai:dspace.library.uu.nl:1874/395075 |
---|---|
record_format |
openpolar |
spelling |
ftunivutrecht:oai:dspace.library.uu.nl:1874/395075 2023-12-03T10:12:25+01:00 Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica Turney, Chris S. M. Fogwill, Christopher J. Golledge, Nicholas R. McKay, Nicholas P. van Sebille, Erik Jones, Richard T. Etheridge, David Rubino, Mauro Thornton, David P. Davies, Siwan M. Ramsey, Christopher Bronk Thomas, Zoe A. Bird, Michael I. Munksgaard, Niels C. Kohno, Mika Woodward, John Winter, Kate Weyrich, Laura S. Rootes, Camilla M. Millman, Helen Albert, Paul G. Rivera, Andres van Ommen, Tas Curran, Mark Moy, Andrew Rahmstorf, Stefan Kawamura, Kenji Hillenbrand, Claus-Dieter Weber, Michael E. Manning, Christina J. Young, Jennifer Cooper, Alan Sub Physical Oceanography Marine and Atmospheric Research 2020-02-25 image/pdf https://dspace.library.uu.nl/handle/1874/395075 en eng 0027-8424 https://dspace.library.uu.nl/handle/1874/395075 info:eu-repo/semantics/OpenAccess Antarctic ice sheets marine ice sheet instability (MISI) paleoclimatology polar amplification tipping element Article 2020 ftunivutrecht 2023-11-08T23:17:40Z The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming. Article in Journal/Newspaper Antarc* Antarctic Antarctica Greenland Ice Sheet Methane hydrate North Atlantic Southern Ocean Weddell Sea Utrecht University Repository Antarctic Greenland Misi ENVELOPE(26.683,26.683,66.617,66.617) Southern Ocean The Antarctic Weddell Weddell Sea West Antarctic Ice Sheet |
institution |
Open Polar |
collection |
Utrecht University Repository |
op_collection_id |
ftunivutrecht |
language |
English |
topic |
Antarctic ice sheets marine ice sheet instability (MISI) paleoclimatology polar amplification tipping element |
spellingShingle |
Antarctic ice sheets marine ice sheet instability (MISI) paleoclimatology polar amplification tipping element Turney, Chris S. M. Fogwill, Christopher J. Golledge, Nicholas R. McKay, Nicholas P. van Sebille, Erik Jones, Richard T. Etheridge, David Rubino, Mauro Thornton, David P. Davies, Siwan M. Ramsey, Christopher Bronk Thomas, Zoe A. Bird, Michael I. Munksgaard, Niels C. Kohno, Mika Woodward, John Winter, Kate Weyrich, Laura S. Rootes, Camilla M. Millman, Helen Albert, Paul G. Rivera, Andres van Ommen, Tas Curran, Mark Moy, Andrew Rahmstorf, Stefan Kawamura, Kenji Hillenbrand, Claus-Dieter Weber, Michael E. Manning, Christina J. Young, Jennifer Cooper, Alan Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
topic_facet |
Antarctic ice sheets marine ice sheet instability (MISI) paleoclimatology polar amplification tipping element |
description |
The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming. |
author2 |
Sub Physical Oceanography Marine and Atmospheric Research |
format |
Article in Journal/Newspaper |
author |
Turney, Chris S. M. Fogwill, Christopher J. Golledge, Nicholas R. McKay, Nicholas P. van Sebille, Erik Jones, Richard T. Etheridge, David Rubino, Mauro Thornton, David P. Davies, Siwan M. Ramsey, Christopher Bronk Thomas, Zoe A. Bird, Michael I. Munksgaard, Niels C. Kohno, Mika Woodward, John Winter, Kate Weyrich, Laura S. Rootes, Camilla M. Millman, Helen Albert, Paul G. Rivera, Andres van Ommen, Tas Curran, Mark Moy, Andrew Rahmstorf, Stefan Kawamura, Kenji Hillenbrand, Claus-Dieter Weber, Michael E. Manning, Christina J. Young, Jennifer Cooper, Alan |
author_facet |
Turney, Chris S. M. Fogwill, Christopher J. Golledge, Nicholas R. McKay, Nicholas P. van Sebille, Erik Jones, Richard T. Etheridge, David Rubino, Mauro Thornton, David P. Davies, Siwan M. Ramsey, Christopher Bronk Thomas, Zoe A. Bird, Michael I. Munksgaard, Niels C. Kohno, Mika Woodward, John Winter, Kate Weyrich, Laura S. Rootes, Camilla M. Millman, Helen Albert, Paul G. Rivera, Andres van Ommen, Tas Curran, Mark Moy, Andrew Rahmstorf, Stefan Kawamura, Kenji Hillenbrand, Claus-Dieter Weber, Michael E. Manning, Christina J. Young, Jennifer Cooper, Alan |
author_sort |
Turney, Chris S. M. |
title |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_short |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_full |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_fullStr |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_full_unstemmed |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_sort |
early last interglacial ocean warming drove substantial ice mass loss from antarctica |
publishDate |
2020 |
url |
https://dspace.library.uu.nl/handle/1874/395075 |
long_lat |
ENVELOPE(26.683,26.683,66.617,66.617) |
geographic |
Antarctic Greenland Misi Southern Ocean The Antarctic Weddell Weddell Sea West Antarctic Ice Sheet |
geographic_facet |
Antarctic Greenland Misi Southern Ocean The Antarctic Weddell Weddell Sea West Antarctic Ice Sheet |
genre |
Antarc* Antarctic Antarctica Greenland Ice Sheet Methane hydrate North Atlantic Southern Ocean Weddell Sea |
genre_facet |
Antarc* Antarctic Antarctica Greenland Ice Sheet Methane hydrate North Atlantic Southern Ocean Weddell Sea |
op_relation |
0027-8424 https://dspace.library.uu.nl/handle/1874/395075 |
op_rights |
info:eu-repo/semantics/OpenAccess |
_version_ |
1784258996433059840 |