Aeolian transport and deposition of plant wax n-alkanes across the tropical North Atlantic Ocean

Long chain n-alkanes are terrestrial higher plant biomarkers analysed in marine sedimentary archives to reconstruct continental palaeoclimatic and palaeohydrological conditions. Latitudinal variation in their concentration and distribution in marine sediments relatively close to the continent has be...

Full description

Bibliographic Details
Main Authors: Schreuder, Laura T., Stuut, Jan Berend W., Korte, Laura F., Sinninghe Damsté, Jaap S., Schouten, Stefan
Other Authors: Organic geochemistry, non-UU output of UU-AW members
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/376768
Description
Summary:Long chain n-alkanes are terrestrial higher plant biomarkers analysed in marine sedimentary archives to reconstruct continental palaeoclimatic and palaeohydrological conditions. Latitudinal variation in their concentration and distribution in marine sediments relatively close to the continent has been widely studied, but little is known on the extent to which this continental signal extends to the ocean. Furthermore, no studies have examined the seasonal variation in the deposition of these biomarkers in marine sediments. Here we studied longitudinal variation in the composition of long chain n-alkanes and two other terrestrial higher plant biomarkers (long chain n-alkanols and long chain fatty acids) in atmospheric particles, as well as longitudinal and seasonal variation in long chain n-alkanes in sinking particles in the ocean at different water depths and in surface sediments, all collected along a 12°N transect across the tropical North Atlantic Ocean. The highest abundance of all three biomarker classes was closest to the African coast, as expected, because they are transported with Saharan dust and the largest part of the dust is deposited close to the source. At this proximal location, the seasonal variability in long chain n-alkane flux and the chain length distribution of the n-alkanes in sinking particles was most pronounced, due to seasonal change in the dust source or to change in vegetation composition in the source area, related to the position of the Intertropical Convergence Zone (ITCZ). In contrast, in the open ocean the seasonal variability in both the long chain n-alkane flux and chain length distribution of the n-alkanes was low. The abundance of the alkanes was also lower, as expected because of the larger source-to-sink distance. At the western part of the transect, close to South America, we found an additional source of the alkanes in the sinking particles during spring and autumn in the year 2013. The δ13C values of the alkanes in the surface sediment closest to the South American ...