Dynamic Response of a High Arctic Glacier to Melt and Runoff Variations

The dynamic response of High Arctic glaciers to increased runoff in a warming climate remains poorly understood. We analyze a 10-year record of continuous velocity data collected at multiple sites on Nordenskiöldbreen, Svalbard, and study the connection between ice flow and runoff within and between...

Full description

Bibliographic Details
Main Authors: van Pelt, Ward J.J., Pohjola, Veijo A., Pettersson, Rickard, Ehwald, Lena E., Reijmer, Carleen H., Boot, W, Jakobs, Constantijn L.
Other Authors: Sub Dynamics Meteorology, Sub Algemeen Marine & Atmospheric Res, Marine and Atmospheric Research
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/364961
Description
Summary:The dynamic response of High Arctic glaciers to increased runoff in a warming climate remains poorly understood. We analyze a 10-year record of continuous velocity data collected at multiple sites on Nordenskiöldbreen, Svalbard, and study the connection between ice flow and runoff within and between seasons. During the melt season, the sensitivity of ice motion to runoff at sites in the ablation and lower accumulation zone drops by a factor of 3 when cumulative runoff exceeds a local threshold, which is likely associated with a transition from inefficient (distributed) to efficient (channelized) drainage. Average summer (June-August) velocities are found to increase with summer ablation, while subsequent fall (September-November) velocities decrease. Spring (March-May) velocities are largely insensitive to summer ablation, which suggests a short-lived impact of summer melt on ice flow during the cold season. The net impact of summer ablation on annual velocities is found to be insignificant.