High latitude hydrological changes during the Eocene Thermal Maximum 2

The Eocene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), represent extreme global warming events ~56 and 54 million years ago associated with rapid increases in atmospheric greenhouse gas concentrations. An initial study on PETM characteris...

Full description

Bibliographic Details
Main Authors: Krishnan, Srinath, Pagani, Mark, Huber, Matthew, Sluijs, Appy
Other Authors: Marine palynology and palaeoceanography, Marine Palynology
Format: Article in Journal/Newspaper
Language:English
Published: 2014
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/308479
Description
Summary:The Eocene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), represent extreme global warming events ~56 and 54 million years ago associated with rapid increases in atmospheric greenhouse gas concentrations. An initial study on PETM characteristics in the Arctic region argued for intensification of the hydrological cycle and a substantial increase in poleward moisture transport during global warming based on compound-specific carbon and hydrogen isotopic (2H/1H) records from sedimentary leaf-wax lipids. In this study, we apply this isotopic and hydrological approach on sediments deposited during ETM2 from the Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302). Our results show similar 2H/1H changes during ETM2 as during the PETM, with a period of 2H-enrichment (~20‰) relative to "pre-event" values just prior to the negative carbon isotope shift (CIE) that is often taken as the onset of the hyperthermal, and more negative lipid δ2H values (~ - 15‰) during peak warming. Notably, lipid 2H-enrichment at the base of the event is coeval with colder TEX86H temperatures.If 2H/1H values of leaf waxes primarily reflect the hydrogen isotopic composition of precipitation, the observed local relationship between temperature and 2H/1H values for the body of ETM2 is precisely the opposite of what would be predicted using a simple Rayleigh isotope distillation model, assuming a meridional vapor trajectory and a reduction in equator-pole temperature gradients. Overall, a negative correlation exists between the average chain length of n-alkanes and 2H/1H suggesting that local changes in ecology could have impacted the hydrogen isotopic compositions of leaf waxes. The negative correlation falls across three separate intervals - the base of the event, the initial CIE, and during the H2 hyperthermal (of which the assignment is not fully certain). Three possible mechanisms potentially explain 2H-enriched signals at the base of the event, including (1) intense ...