Microbial iron cycling in permafrost peatlands affected by global warming - Impact on carbon mobilization and greenhouse gas emissions

Northern Hemisphere peatlands store vast amounts of carbon, particularly in permafrost regions where low temperatures inhibited organic matter decomposition since the last glacial ice age. With high latitudes warming faster than anywhere else on the planet, there is urgent concern about the impact o...

Full description

Bibliographic Details
Main Author: Patzner, Monique Sézanne
Other Authors: Kappler, Andreas (Prof. Dr.)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Tübingen 2023
Subjects:
500
550
570
Ice
Online Access:http://hdl.handle.net/10900/121085
https://doi.org/10.15496/publikation-62452
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1210854
id ftunivtuebing:oai:publikationen.uni-tuebingen.de:10900/121085
record_format openpolar
spelling ftunivtuebing:oai:publikationen.uni-tuebingen.de:10900/121085 2023-11-12T03:59:12+01:00 Microbial iron cycling in permafrost peatlands affected by global warming - Impact on carbon mobilization and greenhouse gas emissions Patzner, Monique Sézanne Kappler, Andreas (Prof. Dr.) 2023-10-20 application/pdf http://hdl.handle.net/10900/121085 https://doi.org/10.15496/publikation-62452 http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1210854 en eng Universität Tübingen http://hdl.handle.net/10900/121085 http://dx.doi.org/10.15496/publikation-62452 http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1210854 ubt-podok http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en 500 550 570 Auftauender Permafrost Moore Eisen organischer Kohlenstoff Abisko Arktik peatlands iron soil organic carbon Arctic Thawing permafrost Dissertation info:eu-repo/semantics/doctoralThesis 2023 ftunivtuebing https://doi.org/10.15496/publikation-62452 2023-10-22T22:51:32Z Northern Hemisphere peatlands store vast amounts of carbon, particularly in permafrost regions where low temperatures inhibited organic matter decomposition since the last glacial ice age. With high latitudes warming faster than anywhere else on the planet, there is urgent concern about the impact of permafrost thaw on the stability of this carbon sink. It has been shown that iron(III) (oxyhydr)oxides can trap organic carbon in soils, underlain by intact permafrost, which may limit carbon mobilization and thus its degradation. Therefore, it is considered as a so-called rusty carbon sink. However, controls on the stability of iron-carbon associations in permafrost peatlands and their response to warming temperatures are poorly understood. Only little is known about the microbial iron cycle in permafrost peatlands and how it is impacted by global warming. Its consequences for carbon mobilization and ultimately greenhouse gas emissions such as carbon dioxide and methane prevail unexplored. Aiming to fill these knowledge gaps, we characterized the dynamic interactions between iron and carbon in a subarctic thawing permafrost peatland (Stordalen mire) in Abisko, Northern Sweden. Here, in the discontinuous permafrost zone, oxic palsa mounds with ice-rich cores are rapidly collapsing into acidic bogs before they ultimately transform into ice-free fen-type wetlands. We show that reactive Fe minerals such as iron(III) (oxyhydr)oxides bind significant quantities of organic carbon (up to 20% of total organic carbon) in areas of intact permafrost. However, these iron-carbon associations are not stable during permafrost thaw. Iron(III)-reducing bacteria, such as e.g. Geobacter spp., reductively dissolve iron(III) (oxyhydr)oxides coupled to carbon oxidation, and release aqueous iron (iron(II)) and the previously iron-bound, aliphatic-like organic carbon that becomes mobilized. The microbially driven iron(III) reduction thus directly contributes to greenhouse gas emissions such as carbon dioxide by iron(III) reduction coupled ... Doctoral or Postdoctoral Thesis Abisko Arctic Global warming Ice Northern Sweden palsa permafrost Subarctic Eberhard Karls University Tübingen: Publication System Arctic Abisko ENVELOPE(18.829,18.829,68.349,68.349) Stordalen ENVELOPE(7.337,7.337,62.510,62.510)
institution Open Polar
collection Eberhard Karls University Tübingen: Publication System
op_collection_id ftunivtuebing
language English
topic 500
550
570
Auftauender Permafrost
Moore
Eisen
organischer Kohlenstoff
Abisko
Arktik
peatlands
iron
soil organic carbon
Arctic
Thawing permafrost
spellingShingle 500
550
570
Auftauender Permafrost
Moore
Eisen
organischer Kohlenstoff
Abisko
Arktik
peatlands
iron
soil organic carbon
Arctic
Thawing permafrost
Patzner, Monique Sézanne
Microbial iron cycling in permafrost peatlands affected by global warming - Impact on carbon mobilization and greenhouse gas emissions
topic_facet 500
550
570
Auftauender Permafrost
Moore
Eisen
organischer Kohlenstoff
Abisko
Arktik
peatlands
iron
soil organic carbon
Arctic
Thawing permafrost
description Northern Hemisphere peatlands store vast amounts of carbon, particularly in permafrost regions where low temperatures inhibited organic matter decomposition since the last glacial ice age. With high latitudes warming faster than anywhere else on the planet, there is urgent concern about the impact of permafrost thaw on the stability of this carbon sink. It has been shown that iron(III) (oxyhydr)oxides can trap organic carbon in soils, underlain by intact permafrost, which may limit carbon mobilization and thus its degradation. Therefore, it is considered as a so-called rusty carbon sink. However, controls on the stability of iron-carbon associations in permafrost peatlands and their response to warming temperatures are poorly understood. Only little is known about the microbial iron cycle in permafrost peatlands and how it is impacted by global warming. Its consequences for carbon mobilization and ultimately greenhouse gas emissions such as carbon dioxide and methane prevail unexplored. Aiming to fill these knowledge gaps, we characterized the dynamic interactions between iron and carbon in a subarctic thawing permafrost peatland (Stordalen mire) in Abisko, Northern Sweden. Here, in the discontinuous permafrost zone, oxic palsa mounds with ice-rich cores are rapidly collapsing into acidic bogs before they ultimately transform into ice-free fen-type wetlands. We show that reactive Fe minerals such as iron(III) (oxyhydr)oxides bind significant quantities of organic carbon (up to 20% of total organic carbon) in areas of intact permafrost. However, these iron-carbon associations are not stable during permafrost thaw. Iron(III)-reducing bacteria, such as e.g. Geobacter spp., reductively dissolve iron(III) (oxyhydr)oxides coupled to carbon oxidation, and release aqueous iron (iron(II)) and the previously iron-bound, aliphatic-like organic carbon that becomes mobilized. The microbially driven iron(III) reduction thus directly contributes to greenhouse gas emissions such as carbon dioxide by iron(III) reduction coupled ...
author2 Kappler, Andreas (Prof. Dr.)
format Doctoral or Postdoctoral Thesis
author Patzner, Monique Sézanne
author_facet Patzner, Monique Sézanne
author_sort Patzner, Monique Sézanne
title Microbial iron cycling in permafrost peatlands affected by global warming - Impact on carbon mobilization and greenhouse gas emissions
title_short Microbial iron cycling in permafrost peatlands affected by global warming - Impact on carbon mobilization and greenhouse gas emissions
title_full Microbial iron cycling in permafrost peatlands affected by global warming - Impact on carbon mobilization and greenhouse gas emissions
title_fullStr Microbial iron cycling in permafrost peatlands affected by global warming - Impact on carbon mobilization and greenhouse gas emissions
title_full_unstemmed Microbial iron cycling in permafrost peatlands affected by global warming - Impact on carbon mobilization and greenhouse gas emissions
title_sort microbial iron cycling in permafrost peatlands affected by global warming - impact on carbon mobilization and greenhouse gas emissions
publisher Universität Tübingen
publishDate 2023
url http://hdl.handle.net/10900/121085
https://doi.org/10.15496/publikation-62452
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1210854
long_lat ENVELOPE(18.829,18.829,68.349,68.349)
ENVELOPE(7.337,7.337,62.510,62.510)
geographic Arctic
Abisko
Stordalen
geographic_facet Arctic
Abisko
Stordalen
genre Abisko
Arctic
Global warming
Ice
Northern Sweden
palsa
permafrost
Subarctic
genre_facet Abisko
Arctic
Global warming
Ice
Northern Sweden
palsa
permafrost
Subarctic
op_relation http://hdl.handle.net/10900/121085
http://dx.doi.org/10.15496/publikation-62452
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1210854
op_rights ubt-podok
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
op_doi https://doi.org/10.15496/publikation-62452
_version_ 1782330883249799168