Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations

The Antarctic ice sheet (AIS) has the greatest potential for global sea level rise. This study simulates AIS ice creeping, sliding, tabular calving, and estimates the total mass balances, using a recently developed, advanced ice dynamics model, known as SEGMENT-Ice. SEGMENT-Ice is written in a spher...

Full description

Bibliographic Details
Main Authors: Ren, D, Leslie, LM, Lynch, MJ
Format: Article in Journal/Newspaper
Language:unknown
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10453/118159
id ftunivtsydney:oai:opus.lib.uts.edu.au:10453/118159
record_format openpolar
spelling ftunivtsydney:oai:opus.lib.uts.edu.au:10453/118159 2023-05-15T13:48:10+02:00 Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations Ren, D Leslie, LM Lynch, MJ 2013-06-01 application/pdf http://hdl.handle.net/10453/118159 unknown Climate Dynamics 10.1007/s00382-012-1464-3 Climate Dynamics, 2013, 40 (11-12), pp. 2617 - 2636 0930-7575 http://hdl.handle.net/10453/118159 Meteorology & Atmospheric Sciences Journal Article 2013 ftunivtsydney 2022-03-13T13:54:08Z The Antarctic ice sheet (AIS) has the greatest potential for global sea level rise. This study simulates AIS ice creeping, sliding, tabular calving, and estimates the total mass balances, using a recently developed, advanced ice dynamics model, known as SEGMENT-Ice. SEGMENT-Ice is written in a spherical Earth coordinate system. Because the AIS contains the South Pole, a projection transfer is performed to displace the pole outside of the simulation domain. The AIS also has complex ice-water-granular material-bedrock configurations, requiring sophisticated lateral and basal boundary conditions. Because of the prevalence of ice shelves, a 'girder yield' type calving scheme is activated. The simulations of present surface ice flow velocities compare favorably with InSAR measurements, for various ice-water-bedrock configurations. The estimated ice mass loss rate during 2003-2009 agrees with GRACE measurements and provides more spatial details not represented by the latter. The model estimated calving frequencies of the peripheral ice shelves from 1996 (roughly when the 5-km digital elevation and thickness data for the shelves were collected) to 2009 compare well with archived scatterometer images. SEGMENT-Ice's unique, non-local systematic calving scheme is found to be relevant for tabular calving. However, the exact timing of calving and of iceberg sizes cannot be simulated accurately at present. A projection of the future mass change of the AIS is made, with SEGMENT-Ice forced by atmospheric conditions from three different coupled general circulation models. The entire AIS is estimated to be losing mass steadily at a rate of ~120 km3/a at present and this rate possibly may double by year 2100. © 2012 The Author(s). Article in Journal/Newspaper Antarc* Antarctic Ice Sheet Ice Shelves Iceberg* South pole South pole University of Technology Sydney: OPUS - Open Publications of UTS Scholars Antarctic South Pole The Antarctic
institution Open Polar
collection University of Technology Sydney: OPUS - Open Publications of UTS Scholars
op_collection_id ftunivtsydney
language unknown
topic Meteorology & Atmospheric Sciences
spellingShingle Meteorology & Atmospheric Sciences
Ren, D
Leslie, LM
Lynch, MJ
Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations
topic_facet Meteorology & Atmospheric Sciences
description The Antarctic ice sheet (AIS) has the greatest potential for global sea level rise. This study simulates AIS ice creeping, sliding, tabular calving, and estimates the total mass balances, using a recently developed, advanced ice dynamics model, known as SEGMENT-Ice. SEGMENT-Ice is written in a spherical Earth coordinate system. Because the AIS contains the South Pole, a projection transfer is performed to displace the pole outside of the simulation domain. The AIS also has complex ice-water-granular material-bedrock configurations, requiring sophisticated lateral and basal boundary conditions. Because of the prevalence of ice shelves, a 'girder yield' type calving scheme is activated. The simulations of present surface ice flow velocities compare favorably with InSAR measurements, for various ice-water-bedrock configurations. The estimated ice mass loss rate during 2003-2009 agrees with GRACE measurements and provides more spatial details not represented by the latter. The model estimated calving frequencies of the peripheral ice shelves from 1996 (roughly when the 5-km digital elevation and thickness data for the shelves were collected) to 2009 compare well with archived scatterometer images. SEGMENT-Ice's unique, non-local systematic calving scheme is found to be relevant for tabular calving. However, the exact timing of calving and of iceberg sizes cannot be simulated accurately at present. A projection of the future mass change of the AIS is made, with SEGMENT-Ice forced by atmospheric conditions from three different coupled general circulation models. The entire AIS is estimated to be losing mass steadily at a rate of ~120 km3/a at present and this rate possibly may double by year 2100. © 2012 The Author(s).
format Article in Journal/Newspaper
author Ren, D
Leslie, LM
Lynch, MJ
author_facet Ren, D
Leslie, LM
Lynch, MJ
author_sort Ren, D
title Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations
title_short Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations
title_full Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations
title_fullStr Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations
title_full_unstemmed Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations
title_sort verification of model simulated mass balance, flow fields and tabular calving events of the antarctic ice sheet against remotely sensed observations
publishDate 2013
url http://hdl.handle.net/10453/118159
geographic Antarctic
South Pole
The Antarctic
geographic_facet Antarctic
South Pole
The Antarctic
genre Antarc*
Antarctic
Ice Sheet
Ice Shelves
Iceberg*
South pole
South pole
genre_facet Antarc*
Antarctic
Ice Sheet
Ice Shelves
Iceberg*
South pole
South pole
op_relation Climate Dynamics
10.1007/s00382-012-1464-3
Climate Dynamics, 2013, 40 (11-12), pp. 2617 - 2636
0930-7575
http://hdl.handle.net/10453/118159
_version_ 1766248811718508544