Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar

Coupling between the ionized and neutral atmosphere through particle collisions allows an indirect study of the neutral atmosphere through measurements of ionospheric plasma parameters. We estimate the neutral density of the upper thermosphere above ~250 km with the European Incoherent Scatter Svalb...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Vickers, Hannah, Kosch, M. J., Sutton, E., Ogawa, Y., La Hoz, Cesar
Format: Article in Journal/Newspaper
Language:English
Published: American Geopgysical Union (AGU) 2013
Subjects:
Online Access:https://hdl.handle.net/10037/5994
https://doi.org/10.1002/jgra.50169
_version_ 1829307766803529728
author Vickers, Hannah
Kosch, M. J.
Sutton, E.
Ogawa, Y.
La Hoz, Cesar
author_facet Vickers, Hannah
Kosch, M. J.
Sutton, E.
Ogawa, Y.
La Hoz, Cesar
author_sort Vickers, Hannah
collection University of Tromsø: Munin Open Research Archive
container_issue 3
container_start_page 1319
container_title Journal of Geophysical Research: Space Physics
container_volume 118
description Coupling between the ionized and neutral atmosphere through particle collisions allows an indirect study of the neutral atmosphere through measurements of ionospheric plasma parameters. We estimate the neutral density of the upper thermosphere above ~250 km with the European Incoherent Scatter Svalbard Radar (ESR) using the year-long operations of the International Polar Year from March 2007 to February 2008. The simplified momentum equation for atomic oxygen ions is used for field-aligned motion in the steady state, taking into account the opposing forces of plasma pressure gradients and gravity only. This restricts the technique to quiet geomagnetic periods, which applies to most of the International Polar Year during the recent very quiet solar minimum. The method works best in the height range ~300–400 km where our assumptions are satisfied. Differences between Mass Spectrometer and Incoherent Scatter and ESR estimates are found to vary with altitude, season, and magnetic disturbance, with the largest discrepancies during the winter months. A total of 9 out of 10 in situ passes by the CHAMP satellite above Svalbard at 350 km altitude agree with the ESR neutral density estimates to within the error bars of the measurements during quiet geomagnetic periods.
format Article in Journal/Newspaper
genre EISCAT
International Polar Year
Svalbard
genre_facet EISCAT
International Polar Year
Svalbard
geographic Svalbard
geographic_facet Svalbard
id ftunivtroemsoe:oai:munin.uit.no:10037/5994
institution Open Polar
language English
op_collection_id ftunivtroemsoe
op_container_end_page 1330
op_doi https://doi.org/10.1002/jgra.50169
op_relation FRIDAID 1039379
http://dx.doi.org/10.1002/jgra.50169
https://hdl.handle.net/10037/5994
op_rights openAccess
publishDate 2013
publisher American Geopgysical Union (AGU)
record_format openpolar
spelling ftunivtroemsoe:oai:munin.uit.no:10037/5994 2025-04-13T14:18:07+00:00 Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar Vickers, Hannah Kosch, M. J. Sutton, E. Ogawa, Y. La Hoz, Cesar 2013 https://hdl.handle.net/10037/5994 https://doi.org/10.1002/jgra.50169 eng eng American Geopgysical Union (AGU) FRIDAID 1039379 http://dx.doi.org/10.1002/jgra.50169 https://hdl.handle.net/10037/5994 openAccess VDP::Mathematics and natural science: 400::Physics: 430::Space and plasma physics: 437 VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Rom- og plasmafysikk: 437 Journal article Tidsskriftartikkel Peer reviewed 2013 ftunivtroemsoe https://doi.org/10.1002/jgra.50169 2025-03-14T05:17:55Z Coupling between the ionized and neutral atmosphere through particle collisions allows an indirect study of the neutral atmosphere through measurements of ionospheric plasma parameters. We estimate the neutral density of the upper thermosphere above ~250 km with the European Incoherent Scatter Svalbard Radar (ESR) using the year-long operations of the International Polar Year from March 2007 to February 2008. The simplified momentum equation for atomic oxygen ions is used for field-aligned motion in the steady state, taking into account the opposing forces of plasma pressure gradients and gravity only. This restricts the technique to quiet geomagnetic periods, which applies to most of the International Polar Year during the recent very quiet solar minimum. The method works best in the height range ~300–400 km where our assumptions are satisfied. Differences between Mass Spectrometer and Incoherent Scatter and ESR estimates are found to vary with altitude, season, and magnetic disturbance, with the largest discrepancies during the winter months. A total of 9 out of 10 in situ passes by the CHAMP satellite above Svalbard at 350 km altitude agree with the ESR neutral density estimates to within the error bars of the measurements during quiet geomagnetic periods. Article in Journal/Newspaper EISCAT International Polar Year Svalbard University of Tromsø: Munin Open Research Archive Svalbard Journal of Geophysical Research: Space Physics 118 3 1319 1330
spellingShingle VDP::Mathematics and natural science: 400::Physics: 430::Space and plasma physics: 437
VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Rom- og plasmafysikk: 437
Vickers, Hannah
Kosch, M. J.
Sutton, E.
Ogawa, Y.
La Hoz, Cesar
Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar
title Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar
title_full Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar
title_fullStr Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar
title_full_unstemmed Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar
title_short Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar
title_sort thermospheric atomic oxygen density estimates using the eiscat svalbard radar
topic VDP::Mathematics and natural science: 400::Physics: 430::Space and plasma physics: 437
VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Rom- og plasmafysikk: 437
topic_facet VDP::Mathematics and natural science: 400::Physics: 430::Space and plasma physics: 437
VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Rom- og plasmafysikk: 437
url https://hdl.handle.net/10037/5994
https://doi.org/10.1002/jgra.50169