Sand waves and sediment transport on the SW Barents sea continental slope

I study a sand-wave field in ~600 meters water depth on the continental slope offshore Northern Norway. Using multibeam bathymetry data from 2008 and 2011 and P-Cable high-resolution 3D seismic data from 2011, I characterize the field. Sand waves reach up to 6.6 m in height and have wavelengths as l...

Full description

Bibliographic Details
Main Author: Waage, Malin
Format: Master Thesis
Language:English
Published: Universitetet i Tromsø 2012
Subjects:
Online Access:https://hdl.handle.net/10037/4668
id ftunivtroemsoe:oai:munin.uit.no:10037/4668
record_format openpolar
spelling ftunivtroemsoe:oai:munin.uit.no:10037/4668 2023-05-15T15:39:13+02:00 Sand waves and sediment transport on the SW Barents sea continental slope Waage, Malin 2012-11-15 https://hdl.handle.net/10037/4668 eng eng Universitetet i Tromsø University of Tromsø https://hdl.handle.net/10037/4668 URN:NBN:no-uit_munin_4385 openAccess Copyright 2012 The Author(s) VDP::Matematikk og Naturvitenskap: 400::Geofag: 450 VDP::Mathematics and natural science: 400::Geosciences: 450 GEO-3900 Master thesis Mastergradsoppgave 2012 ftunivtroemsoe 2021-06-25T17:53:27Z I study a sand-wave field in ~600 meters water depth on the continental slope offshore Northern Norway. Using multibeam bathymetry data from 2008 and 2011 and P-Cable high-resolution 3D seismic data from 2011, I characterize the field. Sand waves reach up to 6.6 m in height and have wavelengths as large as 140 m. They are mostly asymmetric in shape with the steepest side dipping to the northwest, indicating that current flow over the field is predominantly to the northwest. Larger sand waves (>2 m in height, >100 m wavelength) are observed on topographic highs in the sand-wave field, whereas smaller sand waves (<2 m in height, <100 m wavelength) are present in topographic lows. These topographic lows occur where three ~1-2-km-wide channels cut down the continental slope through the sand-wave field. Seismic data reveal that there are no buried sand waves beneath the seafloor, suggesting that the sand waves are being continually eroded and redeposit at the seabed. Seismic data reveal that the depositional environment over the last ~1 Ma has been largely controlled by debris flows during the glaciations and melt-water plumes and channel formation during the glaciations. High-resolution imaging of the first few meters below the seabed shows that winnowing and associated sand-wave migration is currently the dominant sedimentary process. Data across the study area show that there are no buried sand waves beneath the seafloor. This suggests that the sand waves are being continually eroded and redeposited at the seabed. By measuring the offset of the crest of sand waves in the 2008 and 2011 bathymetry data, I calculate that sand waves migrate from 0 to 3.3 m/yr and have an average migration rate of 1.6 m/yr to the northwest. This migration direction which I directly observe in the bathymetry data is in agreement with the migration direction that I infer from the asymmetry of the sand waves. Integrating these migration rates over the cross section of the sand-wave field, I estimate that sand is transported along the continental slope at a rate of 22.3-118x106 m3/yr. These results provide hard constraints for numerical sand-wave migration models trying to identify the link between ocean currents and sand-wave migration. Furthermore, I show that sand-wave migration has the potential to rapidly move large volumes of sand across the deep water. This movement of sand can complicate drilling and production procedures in the energy industry and may affect slope stability on continental margins around the world. Master Thesis Barents Sea Northern Norway University of Tromsø: Munin Open Research Archive Barents Sea Norway
institution Open Polar
collection University of Tromsø: Munin Open Research Archive
op_collection_id ftunivtroemsoe
language English
topic VDP::Matematikk og Naturvitenskap: 400::Geofag: 450
VDP::Mathematics and natural science: 400::Geosciences: 450
GEO-3900
spellingShingle VDP::Matematikk og Naturvitenskap: 400::Geofag: 450
VDP::Mathematics and natural science: 400::Geosciences: 450
GEO-3900
Waage, Malin
Sand waves and sediment transport on the SW Barents sea continental slope
topic_facet VDP::Matematikk og Naturvitenskap: 400::Geofag: 450
VDP::Mathematics and natural science: 400::Geosciences: 450
GEO-3900
description I study a sand-wave field in ~600 meters water depth on the continental slope offshore Northern Norway. Using multibeam bathymetry data from 2008 and 2011 and P-Cable high-resolution 3D seismic data from 2011, I characterize the field. Sand waves reach up to 6.6 m in height and have wavelengths as large as 140 m. They are mostly asymmetric in shape with the steepest side dipping to the northwest, indicating that current flow over the field is predominantly to the northwest. Larger sand waves (>2 m in height, >100 m wavelength) are observed on topographic highs in the sand-wave field, whereas smaller sand waves (<2 m in height, <100 m wavelength) are present in topographic lows. These topographic lows occur where three ~1-2-km-wide channels cut down the continental slope through the sand-wave field. Seismic data reveal that there are no buried sand waves beneath the seafloor, suggesting that the sand waves are being continually eroded and redeposit at the seabed. Seismic data reveal that the depositional environment over the last ~1 Ma has been largely controlled by debris flows during the glaciations and melt-water plumes and channel formation during the glaciations. High-resolution imaging of the first few meters below the seabed shows that winnowing and associated sand-wave migration is currently the dominant sedimentary process. Data across the study area show that there are no buried sand waves beneath the seafloor. This suggests that the sand waves are being continually eroded and redeposited at the seabed. By measuring the offset of the crest of sand waves in the 2008 and 2011 bathymetry data, I calculate that sand waves migrate from 0 to 3.3 m/yr and have an average migration rate of 1.6 m/yr to the northwest. This migration direction which I directly observe in the bathymetry data is in agreement with the migration direction that I infer from the asymmetry of the sand waves. Integrating these migration rates over the cross section of the sand-wave field, I estimate that sand is transported along the continental slope at a rate of 22.3-118x106 m3/yr. These results provide hard constraints for numerical sand-wave migration models trying to identify the link between ocean currents and sand-wave migration. Furthermore, I show that sand-wave migration has the potential to rapidly move large volumes of sand across the deep water. This movement of sand can complicate drilling and production procedures in the energy industry and may affect slope stability on continental margins around the world.
format Master Thesis
author Waage, Malin
author_facet Waage, Malin
author_sort Waage, Malin
title Sand waves and sediment transport on the SW Barents sea continental slope
title_short Sand waves and sediment transport on the SW Barents sea continental slope
title_full Sand waves and sediment transport on the SW Barents sea continental slope
title_fullStr Sand waves and sediment transport on the SW Barents sea continental slope
title_full_unstemmed Sand waves and sediment transport on the SW Barents sea continental slope
title_sort sand waves and sediment transport on the sw barents sea continental slope
publisher Universitetet i Tromsø
publishDate 2012
url https://hdl.handle.net/10037/4668
geographic Barents Sea
Norway
geographic_facet Barents Sea
Norway
genre Barents Sea
Northern Norway
genre_facet Barents Sea
Northern Norway
op_relation https://hdl.handle.net/10037/4668
URN:NBN:no-uit_munin_4385
op_rights openAccess
Copyright 2012 The Author(s)
_version_ 1766370704449601536