Modelling the Earth System - From Tipping Elements to Reconstructions

Climate change can trigger climate tipping points, which are among the major threats to human society. Tipping points are thresholds beyond which a system undergoes abrupt, often irreversible, changes even if the external forcing is brought to a halt. Several large-scale elements in the Earth system...

Full description

Bibliographic Details
Main Author: Bochow, Nils
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: UiT Norges arktiske universitet 2024
Subjects:
Online Access:https://hdl.handle.net/10037/33717
id ftunivtroemsoe:oai:munin.uit.no:10037/33717
record_format openpolar
spelling ftunivtroemsoe:oai:munin.uit.no:10037/33717 2024-06-23T07:53:20+00:00 Modelling the Earth System - From Tipping Elements to Reconstructions Bochow, Nils 2024-06-17 https://hdl.handle.net/10037/33717 eng eng UiT Norges arktiske universitet UiT The Arctic University of Norway Paper I: Bochow, N. & Boers, N. (2023). The South American monsoon approaches a critical transition in response to deforestation. Science Advances, 9 (40), eadd9973. Also available in Munin at https://hdl.handle.net/10037/31582 . Paper II: Bochow, N., Poltronieri, A., Robinson, A., Montoya, M., Rypdal, M. & Boers, N. (2023). Overshooting the critical threshold for the Greenland ice sheet. Nature, 622 , 528–536. Also available in Munin at https://hdl.handle.net/10037/31590 . Paper III: Bochow, N., Poltronieri, M., Rypdal, M. & Boers, N. Reconstructing historical climate fields with deep learning. (Manuscript). Also available on arXiv at https://doi.org/10.48550/arXiv.2311.18348 . 978-82-8236-570-3 (trykt) / 978-82-8236-571-0 (pdf) https://hdl.handle.net/10037/33717 openAccess Copyright 2024 The Author(s) Tipping Points Greenland ice sheet South American Monsoon System Machine Learning Earth System Modelling DOKTOR-004 Doctoral thesis Doktorgradsavhandling 2024 ftunivtroemsoe 2024-06-04T23:54:27Z Climate change can trigger climate tipping points, which are among the major threats to human society. Tipping points are thresholds beyond which a system undergoes abrupt, often irreversible, changes even if the external forcing is brought to a halt. Several large-scale elements in the Earth system are considered tipping elements with global consequences once critical thresholds are crossed and self-reinforcing changes are triggered. However, there is a large uncertainty as to whether some Earth system components should be considered tipping elements. The precise values of the critical thresholds remain uncertain, and it is unclear whether these can be temporarily exceeded without triggering a tipping point. Moreover, incomplete historical records complicate the inference of past dynamics of these components and current reconstruction methods introduce biases into higher-order statistics that are used to assess their stability. On the other hand, with the increasing availability of data and advancements in computational power, deep learning (DL) offers new advances in climate science, ranging from reconstructions to hybrid climate models. This thesis presents an in-depth study of two distinct tipping elements: the Greenland ice sheet (GrIS) and the coupled system of the South American Monsoon and the Amazon rainforest (SAMS). Furthermore, we introduce a novel deep learning-based method to reconstruct spatiotemporal climate fields. By combining model- and observation-based analyses, we show that the SAMS is approaching a critical transition in response to deforestation, potentially leading to a large-scale reduction in precipitation rates in large parts of South America. We associate the critical transition with a weakening of the oceanic moisture inflow due to forest degradation. Subsequently, we use two independent ice-sheet models and show for the first time that the GrIS's critical threshold can be temporarily exceeded without prompting a transition to an alternative state. Timely reversal of surface ... Doctoral or Postdoctoral Thesis Greenland Ice Sheet University of Tromsø: Munin Open Research Archive Greenland
institution Open Polar
collection University of Tromsø: Munin Open Research Archive
op_collection_id ftunivtroemsoe
language English
topic Tipping Points
Greenland ice sheet
South American Monsoon System
Machine Learning
Earth System Modelling
DOKTOR-004
spellingShingle Tipping Points
Greenland ice sheet
South American Monsoon System
Machine Learning
Earth System Modelling
DOKTOR-004
Bochow, Nils
Modelling the Earth System - From Tipping Elements to Reconstructions
topic_facet Tipping Points
Greenland ice sheet
South American Monsoon System
Machine Learning
Earth System Modelling
DOKTOR-004
description Climate change can trigger climate tipping points, which are among the major threats to human society. Tipping points are thresholds beyond which a system undergoes abrupt, often irreversible, changes even if the external forcing is brought to a halt. Several large-scale elements in the Earth system are considered tipping elements with global consequences once critical thresholds are crossed and self-reinforcing changes are triggered. However, there is a large uncertainty as to whether some Earth system components should be considered tipping elements. The precise values of the critical thresholds remain uncertain, and it is unclear whether these can be temporarily exceeded without triggering a tipping point. Moreover, incomplete historical records complicate the inference of past dynamics of these components and current reconstruction methods introduce biases into higher-order statistics that are used to assess their stability. On the other hand, with the increasing availability of data and advancements in computational power, deep learning (DL) offers new advances in climate science, ranging from reconstructions to hybrid climate models. This thesis presents an in-depth study of two distinct tipping elements: the Greenland ice sheet (GrIS) and the coupled system of the South American Monsoon and the Amazon rainforest (SAMS). Furthermore, we introduce a novel deep learning-based method to reconstruct spatiotemporal climate fields. By combining model- and observation-based analyses, we show that the SAMS is approaching a critical transition in response to deforestation, potentially leading to a large-scale reduction in precipitation rates in large parts of South America. We associate the critical transition with a weakening of the oceanic moisture inflow due to forest degradation. Subsequently, we use two independent ice-sheet models and show for the first time that the GrIS's critical threshold can be temporarily exceeded without prompting a transition to an alternative state. Timely reversal of surface ...
format Doctoral or Postdoctoral Thesis
author Bochow, Nils
author_facet Bochow, Nils
author_sort Bochow, Nils
title Modelling the Earth System - From Tipping Elements to Reconstructions
title_short Modelling the Earth System - From Tipping Elements to Reconstructions
title_full Modelling the Earth System - From Tipping Elements to Reconstructions
title_fullStr Modelling the Earth System - From Tipping Elements to Reconstructions
title_full_unstemmed Modelling the Earth System - From Tipping Elements to Reconstructions
title_sort modelling the earth system - from tipping elements to reconstructions
publisher UiT Norges arktiske universitet
publishDate 2024
url https://hdl.handle.net/10037/33717
geographic Greenland
geographic_facet Greenland
genre Greenland
Ice Sheet
genre_facet Greenland
Ice Sheet
op_relation Paper I: Bochow, N. & Boers, N. (2023). The South American monsoon approaches a critical transition in response to deforestation. Science Advances, 9 (40), eadd9973. Also available in Munin at https://hdl.handle.net/10037/31582 . Paper II: Bochow, N., Poltronieri, A., Robinson, A., Montoya, M., Rypdal, M. & Boers, N. (2023). Overshooting the critical threshold for the Greenland ice sheet. Nature, 622 , 528–536. Also available in Munin at https://hdl.handle.net/10037/31590 . Paper III: Bochow, N., Poltronieri, M., Rypdal, M. & Boers, N. Reconstructing historical climate fields with deep learning. (Manuscript). Also available on arXiv at https://doi.org/10.48550/arXiv.2311.18348 .
978-82-8236-570-3 (trykt) / 978-82-8236-571-0 (pdf)
https://hdl.handle.net/10037/33717
op_rights openAccess
Copyright 2024 The Author(s)
_version_ 1802644920359452672