Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management

23.08.23: Trekkes tilbake fra visning som løsning på at oppgaven ble ferdigstilt fra studieadministrasjonen litt for fort/IHTI The transport sector is a major contributor to the emission of greenhouse gases and air pollution. As urbanization and population growth continue to increase, the demand for...

Full description

Bibliographic Details
Main Author: Breimo, Marit Utheim
Format: Master Thesis
Language:English
Published: UiT The Arctic University of Norway 2023
Subjects:
Online Access:https://hdl.handle.net/10037/30103
id ftunivtroemsoe:oai:munin.uit.no:10037/30103
record_format openpolar
spelling ftunivtroemsoe:oai:munin.uit.no:10037/30103 2023-09-26T15:19:41+02:00 Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management Breimo, Marit Utheim 2023-06-04 https://hdl.handle.net/10037/30103 eng eng UiT The Arctic University of Norway UiT Norges arktiske universitet https://hdl.handle.net/10037/30103 Copyright 2023 The Author(s) Environmental engineering Mathematics. Information and communication science. Physics. Optimization. Machine Learning EOM-3901 Master thesis Mastergradsoppgave 2023 ftunivtroemsoe 2023-08-30T23:07:26Z 23.08.23: Trekkes tilbake fra visning som løsning på at oppgaven ble ferdigstilt fra studieadministrasjonen litt for fort/IHTI The transport sector is a major contributor to the emission of greenhouse gases and air pollution. As urbanization and population growth continue to increase, the demand for transportation services grows, emphasizing the need for sustainable practices. Therefore, incorporating sustainability into the transport sector can effectively reduce its negative impacts on the environment and optimize the utilization of resources. This thesis aims to address this issue by proposing a novel method that integrates neural networks into the development of a green vehicle routing model. By incorporating environmental considerations, particularly fuel consumption, into the optimization process, the model seeks to generate more sustainable route solutions. The integration of machine learning techniques, specifically an attention-based neural network, demonstrates the potential of combining machine learning with operations research for effective route optimization. While the effectiveness of the green vehicle routing problem (GVRP) has been demonstrated in providing sustainable routes, its practical applications in real-world scenarios are still limited. Therefore, this thesis proposes the implementation of the GVRP model in a real-world waste collection routing problem. The study utilizes data obtained from Remiks, a waste management company responsible for waste collection and handling in Tromsø and Karlsøy. The findings of this study highlight the promising synergy between machine learning and operations research for further advancements and real-world applications. Specifically, the application of the GVRP approach to waste management issues has been shown to reduce emissions during the waste collection process compared to routes optimized solely for distance minimization. The attention-based neural network approach successfully generates routes that minimize fuel consumption, outperforming ... Master Thesis Karlsøy Tromsø University of Tromsø: Munin Open Research Archive Tromsø
institution Open Polar
collection University of Tromsø: Munin Open Research Archive
op_collection_id ftunivtroemsoe
language English
topic Environmental engineering
Mathematics. Information and communication science. Physics. Optimization. Machine Learning
EOM-3901
spellingShingle Environmental engineering
Mathematics. Information and communication science. Physics. Optimization. Machine Learning
EOM-3901
Breimo, Marit Utheim
Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management
topic_facet Environmental engineering
Mathematics. Information and communication science. Physics. Optimization. Machine Learning
EOM-3901
description 23.08.23: Trekkes tilbake fra visning som løsning på at oppgaven ble ferdigstilt fra studieadministrasjonen litt for fort/IHTI The transport sector is a major contributor to the emission of greenhouse gases and air pollution. As urbanization and population growth continue to increase, the demand for transportation services grows, emphasizing the need for sustainable practices. Therefore, incorporating sustainability into the transport sector can effectively reduce its negative impacts on the environment and optimize the utilization of resources. This thesis aims to address this issue by proposing a novel method that integrates neural networks into the development of a green vehicle routing model. By incorporating environmental considerations, particularly fuel consumption, into the optimization process, the model seeks to generate more sustainable route solutions. The integration of machine learning techniques, specifically an attention-based neural network, demonstrates the potential of combining machine learning with operations research for effective route optimization. While the effectiveness of the green vehicle routing problem (GVRP) has been demonstrated in providing sustainable routes, its practical applications in real-world scenarios are still limited. Therefore, this thesis proposes the implementation of the GVRP model in a real-world waste collection routing problem. The study utilizes data obtained from Remiks, a waste management company responsible for waste collection and handling in Tromsø and Karlsøy. The findings of this study highlight the promising synergy between machine learning and operations research for further advancements and real-world applications. Specifically, the application of the GVRP approach to waste management issues has been shown to reduce emissions during the waste collection process compared to routes optimized solely for distance minimization. The attention-based neural network approach successfully generates routes that minimize fuel consumption, outperforming ...
format Master Thesis
author Breimo, Marit Utheim
author_facet Breimo, Marit Utheim
author_sort Breimo, Marit Utheim
title Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management
title_short Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management
title_full Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management
title_fullStr Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management
title_full_unstemmed Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management
title_sort attention-based neural network for solving the green vehicle routing problem in waste management
publisher UiT The Arctic University of Norway
publishDate 2023
url https://hdl.handle.net/10037/30103
geographic Tromsø
geographic_facet Tromsø
genre Karlsøy
Tromsø
genre_facet Karlsøy
Tromsø
op_relation https://hdl.handle.net/10037/30103
op_rights Copyright 2023 The Author(s)
_version_ 1778143096256593920