Using camera traps to monitor cyclic vole populations

Camera traps have become popular labor-efficient and non-invasive tools to study animal populations. The use of camera trap methods has largely focused on large animals and/or animals with identifiable features, with less attention being paid to small mammals, including rodents. Here we investigate...

Full description

Bibliographic Details
Published in:Remote Sensing in Ecology and Conservation
Main Authors: Kleiven, Eivind Flittie, Antunes Lopes Da Silva Nicolau, Pedro Guilherme, Sørbye, Sigrunn Holbek, Aars, Jon, Yoccoz, Nigel, Ims, Rolf Anker
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2022
Subjects:
Online Access:https://hdl.handle.net/10037/28012
https://doi.org/10.1002/rse2.317
id ftunivtroemsoe:oai:munin.uit.no:10037/28012
record_format openpolar
spelling ftunivtroemsoe:oai:munin.uit.no:10037/28012 2023-05-15T15:15:09+02:00 Using camera traps to monitor cyclic vole populations Kleiven, Eivind Flittie Antunes Lopes Da Silva Nicolau, Pedro Guilherme Sørbye, Sigrunn Holbek Aars, Jon Yoccoz, Nigel Ims, Rolf Anker 2022-12-02 https://hdl.handle.net/10037/28012 https://doi.org/10.1002/rse2.317 eng eng Wiley Remote Sensing in Ecology and Conservation Norges forskningsråd: 245638 Kleiven, Antunes Lopes Da Silva Nicolau, Sørbye, Aars, Yoccoz, Ims. Using camera traps to monitor cyclic vole populations. Remote Sensing in Ecology and Conservation. 2022 FRIDAID 2094616 doi:10.1002/rse2.317 2056-3485 https://hdl.handle.net/10037/28012 Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) openAccess Copyright 2022 The Author(s) https://creativecommons.org/licenses/by-nc/4.0 CC-BY-NC Journal article Tidsskriftartikkel Peer reviewed publishedVersion 2022 ftunivtroemsoe https://doi.org/10.1002/rse2.317 2023-01-05T00:02:49Z Camera traps have become popular labor-efficient and non-invasive tools to study animal populations. The use of camera trap methods has largely focused on large animals and/or animals with identifiable features, with less attention being paid to small mammals, including rodents. Here we investigate the suitability of camera-trap-based abundance indices to monitor population dynamics in two species of voles with key functions in boreal and Arctic ecosystems, known for their high-amplitude population cycles. The targeted species—gray-sided vole (Myodes rufocanus) and tundra vole (Microtus oeconomus)—differ with respect to habitat use and spatial-social organization, which allow us to assess whether such species traits influence the accuracy of the abundance indices. For both species, multiple live-trapping grids yielding capture-mark-recapture (CMR) abundance estimates were matched with single tunnel-based camera traps (CT) continuously recording passing animals. The sampling encompassed 3 years with contrasting abundances and phases of the population cycles. We used linear regressions to calibrate CT indices, based on species-specific photo counts over different time windows, as a function of CMR-abundance estimates. We then performed inverse regression to predict CMR abundances from CT indices and assess prediction accuracy. We found that CT indices (for windows maximizing goodness-of-fit of the calibration models) predicted adequately the CMR-based estimates for the gray-sided vole, but performed poorly for the tundra vole. However, spatially aggregating CT indices over nearby camera traps enabled reliable abundance indices also for the tundra vole. Such species differences imply that the design of camera trap studies of rodent population dynamics should be adapted to the species in focus, and adequate spatial replication must be considered. Overall, tunnel-based camera traps yield much more temporally resolved abundance metrics than alternative methods, with a large potential for revealing new aspects of the ... Article in Journal/Newspaper Arctic Tundra University of Tromsø: Munin Open Research Archive Arctic Remote Sensing in Ecology and Conservation
institution Open Polar
collection University of Tromsø: Munin Open Research Archive
op_collection_id ftunivtroemsoe
language English
description Camera traps have become popular labor-efficient and non-invasive tools to study animal populations. The use of camera trap methods has largely focused on large animals and/or animals with identifiable features, with less attention being paid to small mammals, including rodents. Here we investigate the suitability of camera-trap-based abundance indices to monitor population dynamics in two species of voles with key functions in boreal and Arctic ecosystems, known for their high-amplitude population cycles. The targeted species—gray-sided vole (Myodes rufocanus) and tundra vole (Microtus oeconomus)—differ with respect to habitat use and spatial-social organization, which allow us to assess whether such species traits influence the accuracy of the abundance indices. For both species, multiple live-trapping grids yielding capture-mark-recapture (CMR) abundance estimates were matched with single tunnel-based camera traps (CT) continuously recording passing animals. The sampling encompassed 3 years with contrasting abundances and phases of the population cycles. We used linear regressions to calibrate CT indices, based on species-specific photo counts over different time windows, as a function of CMR-abundance estimates. We then performed inverse regression to predict CMR abundances from CT indices and assess prediction accuracy. We found that CT indices (for windows maximizing goodness-of-fit of the calibration models) predicted adequately the CMR-based estimates for the gray-sided vole, but performed poorly for the tundra vole. However, spatially aggregating CT indices over nearby camera traps enabled reliable abundance indices also for the tundra vole. Such species differences imply that the design of camera trap studies of rodent population dynamics should be adapted to the species in focus, and adequate spatial replication must be considered. Overall, tunnel-based camera traps yield much more temporally resolved abundance metrics than alternative methods, with a large potential for revealing new aspects of the ...
format Article in Journal/Newspaper
author Kleiven, Eivind Flittie
Antunes Lopes Da Silva Nicolau, Pedro Guilherme
Sørbye, Sigrunn Holbek
Aars, Jon
Yoccoz, Nigel
Ims, Rolf Anker
spellingShingle Kleiven, Eivind Flittie
Antunes Lopes Da Silva Nicolau, Pedro Guilherme
Sørbye, Sigrunn Holbek
Aars, Jon
Yoccoz, Nigel
Ims, Rolf Anker
Using camera traps to monitor cyclic vole populations
author_facet Kleiven, Eivind Flittie
Antunes Lopes Da Silva Nicolau, Pedro Guilherme
Sørbye, Sigrunn Holbek
Aars, Jon
Yoccoz, Nigel
Ims, Rolf Anker
author_sort Kleiven, Eivind Flittie
title Using camera traps to monitor cyclic vole populations
title_short Using camera traps to monitor cyclic vole populations
title_full Using camera traps to monitor cyclic vole populations
title_fullStr Using camera traps to monitor cyclic vole populations
title_full_unstemmed Using camera traps to monitor cyclic vole populations
title_sort using camera traps to monitor cyclic vole populations
publisher Wiley
publishDate 2022
url https://hdl.handle.net/10037/28012
https://doi.org/10.1002/rse2.317
geographic Arctic
geographic_facet Arctic
genre Arctic
Tundra
genre_facet Arctic
Tundra
op_relation Remote Sensing in Ecology and Conservation
Norges forskningsråd: 245638
Kleiven, Antunes Lopes Da Silva Nicolau, Sørbye, Aars, Yoccoz, Ims. Using camera traps to monitor cyclic vole populations. Remote Sensing in Ecology and Conservation. 2022
FRIDAID 2094616
doi:10.1002/rse2.317
2056-3485
https://hdl.handle.net/10037/28012
op_rights Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
openAccess
Copyright 2022 The Author(s)
https://creativecommons.org/licenses/by-nc/4.0
op_rightsnorm CC-BY-NC
op_doi https://doi.org/10.1002/rse2.317
container_title Remote Sensing in Ecology and Conservation
_version_ 1766345536490700800