Boron concentrations and isotopic compositions in methane-derived authigenic carbonates: Constraints and limitations in reconstructing formation conditions
The boron content and isotopic composition (δ 11 B), of marine carbonates have the potential to constrain CO 2 chemistry during carbonate growth conditions. However, obtaining and interpreting boron compositions from authigenic carbonates in geological archives present several challenges that may su...
Published in: | Earth and Planetary Science Letters |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Elsevier
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10037/23944 https://doi.org/10.1016/j.epsl.2021.117337 |
_version_ | 1829303379088637952 |
---|---|
author | Hong, Wei-Li Lepland, Aivo Kirsimäe, Kalle Crémière, Antoine Rae, James W.B. |
author_facet | Hong, Wei-Li Lepland, Aivo Kirsimäe, Kalle Crémière, Antoine Rae, James W.B. |
author_sort | Hong, Wei-Li |
collection | University of Tromsø: Munin Open Research Archive |
container_start_page | 117337 |
container_title | Earth and Planetary Science Letters |
container_volume | 579 |
description | The boron content and isotopic composition (δ 11 B), of marine carbonates have the potential to constrain CO 2 chemistry during carbonate growth conditions. However, obtaining and interpreting boron compositions from authigenic carbonates in geological archives present several challenges that may substantially limit their application. In particular, contamination from non-carbonate phases during sample preparation must be carefully avoided, and a variety of controls on boron composition during authigenic growth conditions must be evaluated. To advance understanding of the use and limitations of boron in authigenic carbonates, we present data and modelling results on methane-derived authigenic carbonate (MDAC), a by-product of microbially mediated anaerobic oxidation of methane, taken from three cold seep sites along the Norwegian margin. We present a novel sequential leaching method to isolate the boron signals from the micritic (Mg-calcite) and cavity-filling (aragonitic) MDAC cements in these complex multi-phase samples. This method successfully minimizes contamination from non-carbonate phases. To investigate the factors that could potentially contribute to the observed boron signals, we construct a numerical model to simulate the evolution of MDAC δ 11 B and B/Ca ratios over its growth history. We show that diagenetic fluid composition, depths of precipitation, the physical properties of sediments (such as porosity), and mineral surface kinetics all contribute to the observed boron compositions in the different carbonate cements. While broad constraints may be placed on fluid composition, the multiple competing controls on boron in these diagenetic settings limit the ability to place unique solutions on fluid CO 2 chemistry using boron in these authigenic carbonates. |
format | Article in Journal/Newspaper |
genre | Arctic |
genre_facet | Arctic |
id | ftunivtroemsoe:oai:munin.uit.no:10037/23944 |
institution | Open Polar |
language | English |
op_collection_id | ftunivtroemsoe |
op_doi | https://doi.org/10.1016/j.epsl.2021.117337 |
op_relation | Earth and Planetary Science Letters info:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/ info:eu-repo/grantAgreement/RCN/PETROMAKS2/255150/Norway/Norwegian margin fluid systems and methane- derived carbonate crusts - Recent scientific advances in service of petroleum exploration/NORCRUST/ FRIDAID 1975112 doi:10.1016/j.epsl.2021.117337 https://hdl.handle.net/10037/23944 |
op_rights | openAccess Copyright 2021 The Author(s) |
publishDate | 2021 |
publisher | Elsevier |
record_format | openpolar |
spelling | ftunivtroemsoe:oai:munin.uit.no:10037/23944 2025-04-13T14:11:56+00:00 Boron concentrations and isotopic compositions in methane-derived authigenic carbonates: Constraints and limitations in reconstructing formation conditions Hong, Wei-Li Lepland, Aivo Kirsimäe, Kalle Crémière, Antoine Rae, James W.B. 2021-12-23 https://hdl.handle.net/10037/23944 https://doi.org/10.1016/j.epsl.2021.117337 eng eng Elsevier Earth and Planetary Science Letters info:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/ info:eu-repo/grantAgreement/RCN/PETROMAKS2/255150/Norway/Norwegian margin fluid systems and methane- derived carbonate crusts - Recent scientific advances in service of petroleum exploration/NORCRUST/ FRIDAID 1975112 doi:10.1016/j.epsl.2021.117337 https://hdl.handle.net/10037/23944 openAccess Copyright 2021 The Author(s) VDP::Mathematics and natural science: 400::Geosciences: 450::Mineralogy petrology geochemistry: 462 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Mineralogi petrologi geokjemi: 462 Journal article Tidsskriftartikkel Peer reviewed publishedVersion 2021 ftunivtroemsoe https://doi.org/10.1016/j.epsl.2021.117337 2025-03-14T05:17:56Z The boron content and isotopic composition (δ 11 B), of marine carbonates have the potential to constrain CO 2 chemistry during carbonate growth conditions. However, obtaining and interpreting boron compositions from authigenic carbonates in geological archives present several challenges that may substantially limit their application. In particular, contamination from non-carbonate phases during sample preparation must be carefully avoided, and a variety of controls on boron composition during authigenic growth conditions must be evaluated. To advance understanding of the use and limitations of boron in authigenic carbonates, we present data and modelling results on methane-derived authigenic carbonate (MDAC), a by-product of microbially mediated anaerobic oxidation of methane, taken from three cold seep sites along the Norwegian margin. We present a novel sequential leaching method to isolate the boron signals from the micritic (Mg-calcite) and cavity-filling (aragonitic) MDAC cements in these complex multi-phase samples. This method successfully minimizes contamination from non-carbonate phases. To investigate the factors that could potentially contribute to the observed boron signals, we construct a numerical model to simulate the evolution of MDAC δ 11 B and B/Ca ratios over its growth history. We show that diagenetic fluid composition, depths of precipitation, the physical properties of sediments (such as porosity), and mineral surface kinetics all contribute to the observed boron compositions in the different carbonate cements. While broad constraints may be placed on fluid composition, the multiple competing controls on boron in these diagenetic settings limit the ability to place unique solutions on fluid CO 2 chemistry using boron in these authigenic carbonates. Article in Journal/Newspaper Arctic University of Tromsø: Munin Open Research Archive Earth and Planetary Science Letters 579 117337 |
spellingShingle | VDP::Mathematics and natural science: 400::Geosciences: 450::Mineralogy petrology geochemistry: 462 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Mineralogi petrologi geokjemi: 462 Hong, Wei-Li Lepland, Aivo Kirsimäe, Kalle Crémière, Antoine Rae, James W.B. Boron concentrations and isotopic compositions in methane-derived authigenic carbonates: Constraints and limitations in reconstructing formation conditions |
title | Boron concentrations and isotopic compositions in methane-derived authigenic carbonates: Constraints and limitations in reconstructing formation conditions |
title_full | Boron concentrations and isotopic compositions in methane-derived authigenic carbonates: Constraints and limitations in reconstructing formation conditions |
title_fullStr | Boron concentrations and isotopic compositions in methane-derived authigenic carbonates: Constraints and limitations in reconstructing formation conditions |
title_full_unstemmed | Boron concentrations and isotopic compositions in methane-derived authigenic carbonates: Constraints and limitations in reconstructing formation conditions |
title_short | Boron concentrations and isotopic compositions in methane-derived authigenic carbonates: Constraints and limitations in reconstructing formation conditions |
title_sort | boron concentrations and isotopic compositions in methane-derived authigenic carbonates: constraints and limitations in reconstructing formation conditions |
topic | VDP::Mathematics and natural science: 400::Geosciences: 450::Mineralogy petrology geochemistry: 462 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Mineralogi petrologi geokjemi: 462 |
topic_facet | VDP::Mathematics and natural science: 400::Geosciences: 450::Mineralogy petrology geochemistry: 462 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Mineralogi petrologi geokjemi: 462 |
url | https://hdl.handle.net/10037/23944 https://doi.org/10.1016/j.epsl.2021.117337 |