Quantifying the effects of watershed subdivision scale and spatial density of weather inputs on hydrological simulations in a Norwegian Arctic watershed

The effects of watershed subdivisions on hydrological simulations have not been evaluated in Arctic conditions yet. This study applied the Soil and Water Assessment Tool and the threshold drainage area (TDA) technique to evaluate the impacts of watershed subdivision on hydrological simulations at a...

Full description

Bibliographic Details
Published in:Journal of Water and Climate Change
Main Authors: Bui, Minh Tuan, Lu, Jinmei, Nie, Linmei
Format: Article in Journal/Newspaper
Language:English
Published: IWA Publisching 2021
Subjects:
Online Access:https://hdl.handle.net/10037/23559
https://doi.org/10.2166/wcc.2021.173
Description
Summary:The effects of watershed subdivisions on hydrological simulations have not been evaluated in Arctic conditions yet. This study applied the Soil and Water Assessment Tool and the threshold drainage area (TDA) technique to evaluate the impacts of watershed subdivision on hydrological simulations at a 5,913-km 2 Arctic watershed, Målselv. The watershed was discretized according to four TDA scheme scales including 200, 2,000, 5,000, and 10,000 ha. The impacts of different TDA schemes on hydrological simulations in water balance components, snowmelt runoff, and streamflow were investigated. The study revealed that the complexity of terrain and topographic attributes altered significantly in the coarse discretizations: (1) total stream length (−47.2 to −74.6%); (2) average stream slope (−68 to −83%); and (3) drainage density (−24.2 to −51.5%). The spatial density of weather grid integration reduced from −5 to −33.33% in the coarse schemes. The annual mean potential evapotranspiration, evapotranspiration, and lateral flow slightly decreased, while areal rainfall, surface runoff, and water yield slightly increased with the increases of TDAs. It was concluded that the fine TDAs produced finer and higher ranges of snowmelt runoff volume across the watershed. All TDAs had similar capacities to replicate the observed tendency of monthly mean streamflow hydrograph, except overestimated/underestimated peak flows. Spatial variation of streamflow was well analyzed in the fine schemes with high density of stream networks, while the coarse schemes simplified this. Watershed subdivisions affected model performances, in the way of decreasing the accuracy of monthly streamflow simulation, at 60% of investigated hydro-gauging stations (3/5 stations) and in the upstream. Furthermore, watershed subdivisions strongly affected the calibration process regarding the changes in sensitivity ranking of 18 calibrated model parameters and time it took to calibrate.