The thermal maturity of sedimentary basins as revealed by magnetic mineralogy
This is the peer reviewed version of the following article: Abdelmalak, M. M. & Polteau, S. (2020). The thermal maturity of sedimentary basins as revealed by magnetic mineralogy. Basin Research, 32 (6), 1510-1531., which has been published in final form at https://doi.org/10.1111/bre.12439 . Thi...
Published in: | Basin Research |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Wiley
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10037/21389 https://doi.org/10.1111/bre.12439 |
id |
ftunivtroemsoe:oai:munin.uit.no:10037/21389 |
---|---|
record_format |
openpolar |
spelling |
ftunivtroemsoe:oai:munin.uit.no:10037/21389 2023-05-15T15:35:08+02:00 The thermal maturity of sedimentary basins as revealed by magnetic mineralogy Abdelmalak, Mohamed Mansour Polteau, Stephane 2020-02-08 https://hdl.handle.net/10037/21389 https://doi.org/10.1111/bre.12439 eng eng Wiley Basin Research Abdelmalak MM, Polteau S. The thermal maturity of sedimentary basins as revealed by magnetic mineralogy. Basin Research. 2020;32(6):1510-1531 FRIDAID 1809230 doi:10.1111/bre.12439 0950-091X 1365-2117 https://hdl.handle.net/10037/21389 openAccess © 2020 The Authors. Basin Research © 2020 John Wiley & Sons Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists. VDP::Mathematics and natural science: 400 VDP::Matematikk og Naturvitenskap: 400 Journal article Tidsskriftartikkel Peer reviewed acceptedVersion 2020 ftunivtroemsoe https://doi.org/10.1111/bre.12439 2021-06-25T17:58:02Z This is the peer reviewed version of the following article: Abdelmalak, M. M. & Polteau, S. (2020). The thermal maturity of sedimentary basins as revealed by magnetic mineralogy. Basin Research, 32 (6), 1510-1531., which has been published in final form at https://doi.org/10.1111/bre.12439 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. The thermal evolution of sedimentary basins is usually constrained by maturity data, which is interpreted from Rock-Eval pyrolysis and vitrinite reflectance analytical results on field or boreholes samples. However, some thermal evolution models may be inaccurate due to the use of elevated maturities measured in samples collected within an undetected metamorphic contact aureole surrounding a magmatic intrusion. In this context, we investigate the maturity and magnetic mineralogy of 16 claystone samples from Disko-Svartenhuk Basin, part of the SE Baffin Bay volcanic margin. Samples were collected within thermal contact metamorphic aureoles near magma intrusions, as well as equivalent reference samples not affected by intrusions. Rock-Eval pyrolysis (T max ), and vitrinite reflectance (Ro) analysis were performed to assess the thermal maturity, which lies in the oil window when 435°C ≤ T max ≤ 470°C and 0.6%–0.7% ≤ Ro ≤ 1.3%. In addition, we performed low- (<300K) and high-temperature (>300K) investigations of isothermal remanent magnetization to assess the magnetic mineralogy of the selected samples. The maturity results (0.37% ≤ Ro ≤ 2%, 22°C ≤ T max ≤ 604°C) show a predominance of immature to early mature Type III organic matter, but do not reliably identify the contact aureole when compared to the reference samples. The magnetic assemblage of the immature samples consists of iron sulphide (greigite), goethite and oxidized or non-stoichiometric magnetite. The magnetic assemblage of the early mature to mature samples consists of stoichiometric magnetite and fine-grained pyrrhotite (<1 μm). These results document the disappearance of the iron sulphide (greigite) and increase in content of magnetite during normal burial. On the other hand, magnetite is interpreted to be the dominant magnetic mineral inside the contact aureole surrounding dyke/sill intrusions where palaeotemperatures indicate mature to over-mature state. Interestingly, the iron sulphide (greigite) is still detected in the contact aureole where palaeotemperatures exceeded 130°C. Therefore, the magnetic mineralogy is a sensitive method that can characterize normal burial history, as well as identify hidden metamorphic contact aureoles where the iron sulphide greigite is present at temperatures beyond its stability field. Article in Journal/Newspaper Baffin Bay Baffin Bay Baffin University of Tromsø: Munin Open Research Archive Baffin Bay Svartenhuk ENVELOPE(-55.861,-55.861,71.687,71.687) Basin Research 32 6 1510 1531 |
institution |
Open Polar |
collection |
University of Tromsø: Munin Open Research Archive |
op_collection_id |
ftunivtroemsoe |
language |
English |
topic |
VDP::Mathematics and natural science: 400 VDP::Matematikk og Naturvitenskap: 400 |
spellingShingle |
VDP::Mathematics and natural science: 400 VDP::Matematikk og Naturvitenskap: 400 Abdelmalak, Mohamed Mansour Polteau, Stephane The thermal maturity of sedimentary basins as revealed by magnetic mineralogy |
topic_facet |
VDP::Mathematics and natural science: 400 VDP::Matematikk og Naturvitenskap: 400 |
description |
This is the peer reviewed version of the following article: Abdelmalak, M. M. & Polteau, S. (2020). The thermal maturity of sedimentary basins as revealed by magnetic mineralogy. Basin Research, 32 (6), 1510-1531., which has been published in final form at https://doi.org/10.1111/bre.12439 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. The thermal evolution of sedimentary basins is usually constrained by maturity data, which is interpreted from Rock-Eval pyrolysis and vitrinite reflectance analytical results on field or boreholes samples. However, some thermal evolution models may be inaccurate due to the use of elevated maturities measured in samples collected within an undetected metamorphic contact aureole surrounding a magmatic intrusion. In this context, we investigate the maturity and magnetic mineralogy of 16 claystone samples from Disko-Svartenhuk Basin, part of the SE Baffin Bay volcanic margin. Samples were collected within thermal contact metamorphic aureoles near magma intrusions, as well as equivalent reference samples not affected by intrusions. Rock-Eval pyrolysis (T max ), and vitrinite reflectance (Ro) analysis were performed to assess the thermal maturity, which lies in the oil window when 435°C ≤ T max ≤ 470°C and 0.6%–0.7% ≤ Ro ≤ 1.3%. In addition, we performed low- (<300K) and high-temperature (>300K) investigations of isothermal remanent magnetization to assess the magnetic mineralogy of the selected samples. The maturity results (0.37% ≤ Ro ≤ 2%, 22°C ≤ T max ≤ 604°C) show a predominance of immature to early mature Type III organic matter, but do not reliably identify the contact aureole when compared to the reference samples. The magnetic assemblage of the immature samples consists of iron sulphide (greigite), goethite and oxidized or non-stoichiometric magnetite. The magnetic assemblage of the early mature to mature samples consists of stoichiometric magnetite and fine-grained pyrrhotite (<1 μm). These results document the disappearance of the iron sulphide (greigite) and increase in content of magnetite during normal burial. On the other hand, magnetite is interpreted to be the dominant magnetic mineral inside the contact aureole surrounding dyke/sill intrusions where palaeotemperatures indicate mature to over-mature state. Interestingly, the iron sulphide (greigite) is still detected in the contact aureole where palaeotemperatures exceeded 130°C. Therefore, the magnetic mineralogy is a sensitive method that can characterize normal burial history, as well as identify hidden metamorphic contact aureoles where the iron sulphide greigite is present at temperatures beyond its stability field. |
format |
Article in Journal/Newspaper |
author |
Abdelmalak, Mohamed Mansour Polteau, Stephane |
author_facet |
Abdelmalak, Mohamed Mansour Polteau, Stephane |
author_sort |
Abdelmalak, Mohamed Mansour |
title |
The thermal maturity of sedimentary basins as revealed by magnetic mineralogy |
title_short |
The thermal maturity of sedimentary basins as revealed by magnetic mineralogy |
title_full |
The thermal maturity of sedimentary basins as revealed by magnetic mineralogy |
title_fullStr |
The thermal maturity of sedimentary basins as revealed by magnetic mineralogy |
title_full_unstemmed |
The thermal maturity of sedimentary basins as revealed by magnetic mineralogy |
title_sort |
thermal maturity of sedimentary basins as revealed by magnetic mineralogy |
publisher |
Wiley |
publishDate |
2020 |
url |
https://hdl.handle.net/10037/21389 https://doi.org/10.1111/bre.12439 |
long_lat |
ENVELOPE(-55.861,-55.861,71.687,71.687) |
geographic |
Baffin Bay Svartenhuk |
geographic_facet |
Baffin Bay Svartenhuk |
genre |
Baffin Bay Baffin Bay Baffin |
genre_facet |
Baffin Bay Baffin Bay Baffin |
op_relation |
Basin Research Abdelmalak MM, Polteau S. The thermal maturity of sedimentary basins as revealed by magnetic mineralogy. Basin Research. 2020;32(6):1510-1531 FRIDAID 1809230 doi:10.1111/bre.12439 0950-091X 1365-2117 https://hdl.handle.net/10037/21389 |
op_rights |
openAccess © 2020 The Authors. Basin Research © 2020 John Wiley & Sons Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists. |
op_doi |
https://doi.org/10.1111/bre.12439 |
container_title |
Basin Research |
container_volume |
32 |
container_issue |
6 |
container_start_page |
1510 |
op_container_end_page |
1531 |
_version_ |
1766365432390877184 |