Object detection at the edge

While monitoring rodents in the Arctic Tundra to evaluate if climate changes affect the ecosystem. The camera-traps of the coat project generates image data in large scale each year. To manually examine the data in regards to label- ing is a tedious and time-consuming job, and a more efficient and a...

Full description

Bibliographic Details
Main Author: Mathiassen, Truls
Format: Master Thesis
Language:English
Published: UiT Norges arktiske universitet 2020
Subjects:
Online Access:https://hdl.handle.net/10037/20516
_version_ 1829305348550295552
author Mathiassen, Truls
author_facet Mathiassen, Truls
author_sort Mathiassen, Truls
collection University of Tromsø: Munin Open Research Archive
description While monitoring rodents in the Arctic Tundra to evaluate if climate changes affect the ecosystem. The camera-traps of the coat project generates image data in large scale each year. To manually examine the data in regards to label- ing is a tedious and time-consuming job, and a more efficient and automated tool for the task is required. In this thesis we presents the architecture, design and implementation of a object classification model deployed on a small embedded computer, to be used on the gathered image data in order to classify and label the animals at the edge. We conduct transfer-learning on the state-of-the-art pre-trained YOLOv4-tiny model by introducing a labeled COAT image set. We utilize the Convolutional Neural Network of the model to do predictions on a test image set in order to evaluate the model. The result is an application with an embedded model able to predict labels with an accuracy of 96.07% and inference time that classifies it to do so in real-time.
format Master Thesis
genre Arctic
Tundra
genre_facet Arctic
Tundra
geographic Arctic
geographic_facet Arctic
id ftunivtroemsoe:oai:munin.uit.no:10037/20516
institution Open Polar
language English
op_collection_id ftunivtroemsoe
op_relation https://hdl.handle.net/10037/20516
op_rights Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Copyright 2020 The Author(s)
https://creativecommons.org/licenses/by-nc-sa/4.0
publishDate 2020
publisher UiT Norges arktiske universitet
record_format openpolar
spelling ftunivtroemsoe:oai:munin.uit.no:10037/20516 2025-04-13T14:14:41+00:00 Object detection at the edge Mathiassen, Truls 2020-11-10 https://hdl.handle.net/10037/20516 eng eng UiT Norges arktiske universitet UiT The Arctic University of Norway https://hdl.handle.net/10037/20516 Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Copyright 2020 The Author(s) https://creativecommons.org/licenses/by-nc-sa/4.0 VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551 VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551 VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559 VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559 INF-3981 Mastergradsoppgave Master thesis 2020 ftunivtroemsoe 2025-03-14T05:17:57Z While monitoring rodents in the Arctic Tundra to evaluate if climate changes affect the ecosystem. The camera-traps of the coat project generates image data in large scale each year. To manually examine the data in regards to label- ing is a tedious and time-consuming job, and a more efficient and automated tool for the task is required. In this thesis we presents the architecture, design and implementation of a object classification model deployed on a small embedded computer, to be used on the gathered image data in order to classify and label the animals at the edge. We conduct transfer-learning on the state-of-the-art pre-trained YOLOv4-tiny model by introducing a labeled COAT image set. We utilize the Convolutional Neural Network of the model to do predictions on a test image set in order to evaluate the model. The result is an application with an embedded model able to predict labels with an accuracy of 96.07% and inference time that classifies it to do so in real-time. Master Thesis Arctic Tundra University of Tromsø: Munin Open Research Archive Arctic
spellingShingle VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551
VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551
VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559
VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559
INF-3981
Mathiassen, Truls
Object detection at the edge
title Object detection at the edge
title_full Object detection at the edge
title_fullStr Object detection at the edge
title_full_unstemmed Object detection at the edge
title_short Object detection at the edge
title_sort object detection at the edge
topic VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551
VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551
VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559
VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559
INF-3981
topic_facet VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551
VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551
VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559
VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559
INF-3981
url https://hdl.handle.net/10037/20516