Object detection at the edge
While monitoring rodents in the Arctic Tundra to evaluate if climate changes affect the ecosystem. The camera-traps of the coat project generates image data in large scale each year. To manually examine the data in regards to label- ing is a tedious and time-consuming job, and a more efficient and a...
Main Author: | |
---|---|
Format: | Master Thesis |
Language: | English |
Published: |
UiT Norges arktiske universitet
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10037/20516 |
_version_ | 1829305348550295552 |
---|---|
author | Mathiassen, Truls |
author_facet | Mathiassen, Truls |
author_sort | Mathiassen, Truls |
collection | University of Tromsø: Munin Open Research Archive |
description | While monitoring rodents in the Arctic Tundra to evaluate if climate changes affect the ecosystem. The camera-traps of the coat project generates image data in large scale each year. To manually examine the data in regards to label- ing is a tedious and time-consuming job, and a more efficient and automated tool for the task is required. In this thesis we presents the architecture, design and implementation of a object classification model deployed on a small embedded computer, to be used on the gathered image data in order to classify and label the animals at the edge. We conduct transfer-learning on the state-of-the-art pre-trained YOLOv4-tiny model by introducing a labeled COAT image set. We utilize the Convolutional Neural Network of the model to do predictions on a test image set in order to evaluate the model. The result is an application with an embedded model able to predict labels with an accuracy of 96.07% and inference time that classifies it to do so in real-time. |
format | Master Thesis |
genre | Arctic Tundra |
genre_facet | Arctic Tundra |
geographic | Arctic |
geographic_facet | Arctic |
id | ftunivtroemsoe:oai:munin.uit.no:10037/20516 |
institution | Open Polar |
language | English |
op_collection_id | ftunivtroemsoe |
op_relation | https://hdl.handle.net/10037/20516 |
op_rights | Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Copyright 2020 The Author(s) https://creativecommons.org/licenses/by-nc-sa/4.0 |
publishDate | 2020 |
publisher | UiT Norges arktiske universitet |
record_format | openpolar |
spelling | ftunivtroemsoe:oai:munin.uit.no:10037/20516 2025-04-13T14:14:41+00:00 Object detection at the edge Mathiassen, Truls 2020-11-10 https://hdl.handle.net/10037/20516 eng eng UiT Norges arktiske universitet UiT The Arctic University of Norway https://hdl.handle.net/10037/20516 Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Copyright 2020 The Author(s) https://creativecommons.org/licenses/by-nc-sa/4.0 VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551 VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551 VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559 VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559 INF-3981 Mastergradsoppgave Master thesis 2020 ftunivtroemsoe 2025-03-14T05:17:57Z While monitoring rodents in the Arctic Tundra to evaluate if climate changes affect the ecosystem. The camera-traps of the coat project generates image data in large scale each year. To manually examine the data in regards to label- ing is a tedious and time-consuming job, and a more efficient and automated tool for the task is required. In this thesis we presents the architecture, design and implementation of a object classification model deployed on a small embedded computer, to be used on the gathered image data in order to classify and label the animals at the edge. We conduct transfer-learning on the state-of-the-art pre-trained YOLOv4-tiny model by introducing a labeled COAT image set. We utilize the Convolutional Neural Network of the model to do predictions on a test image set in order to evaluate the model. The result is an application with an embedded model able to predict labels with an accuracy of 96.07% and inference time that classifies it to do so in real-time. Master Thesis Arctic Tundra University of Tromsø: Munin Open Research Archive Arctic |
spellingShingle | VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551 VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551 VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559 VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559 INF-3981 Mathiassen, Truls Object detection at the edge |
title | Object detection at the edge |
title_full | Object detection at the edge |
title_fullStr | Object detection at the edge |
title_full_unstemmed | Object detection at the edge |
title_short | Object detection at the edge |
title_sort | object detection at the edge |
topic | VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551 VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551 VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559 VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559 INF-3981 |
topic_facet | VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551 VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551 VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559 VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559 INF-3981 |
url | https://hdl.handle.net/10037/20516 |