Evolution of metal-bearing fluids at the Nussir and Ulveryggen sediment-hosted Cu deposits, Repparfjord Tectonic Window, northern Norway
The Palaeoproterozoic greenstone belts of Fennoscandia are metamorphosed and deformed volcanic and sedimentary rocks that formed in basins with a high base-metal ore potential. One of these, the Repparfjord Tectonic Window (RTW), is exposed in the Caledonides of northern Norway and contains several...
Published in: | Norwegian Journal of Geology |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Norsk Geologisk Forening
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10037/20062 https://doi.org/10.17850/njg100-2-5 |
Summary: | The Palaeoproterozoic greenstone belts of Fennoscandia are metamorphosed and deformed volcanic and sedimentary rocks that formed in basins with a high base-metal ore potential. One of these, the Repparfjord Tectonic Window (RTW), is exposed in the Caledonides of northern Norway and contains several sediment-hosted Cu deposits including Nussir and Ulveryggen. The RTW is composed of mafic metavolcanic rocks (metabasalts, volcanoclastic metabreccia and metatuffite) intercalated with carbonate-siliciclastic sedimentary rocks (dolomitic marble, metasandstone to metapelite). This succession was deformed and metamorphosed up to greenschist to lower amphibolite facies during the Svecofennian Orogeny (c. 1.84 Ga). The Cu-mineralisation at the Nussir deposit is hosted by a dolomitic marble. It occurs mostly in the form of quartz-carbonate veins with chalcopyrite, bornite, chalcocite and covellite as the main ore minerals. In contrast, the Ulveryggen mineralisation is predominantly disseminated within a metasiliciclastic succession and dominated by chalcopyrite, bornite, chalcocite, covellite and neodigenite. Mineralogical, geochemical, stable isotope and fluid-inclusion studies provide insights into the evolution of the Cu-bearing fluids. A wide range in homogenisation temperatures (135–350°C at the Nussir deposit and 102–520°C at the Ulveryggen deposit) and fluid-inclusion salinities (from 0.35 up to 36 wt.% NaCl equivalents) suggest an evolving system with brines developed by subsurface evaporite dissolution. Fluid-inclusion and Cu-sphalerite geothermometry data constrain the temperature-pressure conditions of the Cu mineralisation in the Nussir deposit at 330–340°C and 1.1–2.7 kbars. High salinities at relatively high temperatures within the ore-bearing fluids imply that Cu was transported predominantly by Cu-chloride complexes. The interaction of ore-bearing fluids with carbonate-rich host lithologies is proposed as the main mechanism for deposition of the Cu mineralisation at Nussir. In contrast, at the Ulveryggen ... |
---|