Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages

This is the peer reviewed version of the following article: Vindstad, O.P.L., Jepsen, J.U., Yoccoz, N.G., Bjørnstad, O.N., Mesquita, M.d.S. & Ims, R.A. (2019). Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages. Journal of Animal Eco...

Full description

Bibliographic Details
Published in:Journal of Animal Ecology
Main Authors: Vindstad, Ole Petter Laksforsmo, Jepsen, Jane Uhd, Yoccoz, Nigel Gilles, Bjørnstad, Ottar Nordal, Mesquita, Michel d. S., Ims, Rolf Anker
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2019
Subjects:
Online Access:https://hdl.handle.net/10037/16982
https://doi.org/10.1111/1365-2656.12959
id ftunivtroemsoe:oai:munin.uit.no:10037/16982
record_format openpolar
institution Open Polar
collection University of Tromsø: Munin Open Research Archive
op_collection_id ftunivtroemsoe
language English
topic VDP::Mathematics and natural science: 400::Zoology and botany: 480::Zoogeography: 486
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoogeografi: 486
spellingShingle VDP::Mathematics and natural science: 400::Zoology and botany: 480::Zoogeography: 486
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoogeografi: 486
Vindstad, Ole Petter Laksforsmo
Jepsen, Jane Uhd
Yoccoz, Nigel Gilles
Bjørnstad, Ottar Nordal
Mesquita, Michel d. S.
Ims, Rolf Anker
Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages
topic_facet VDP::Mathematics and natural science: 400::Zoology and botany: 480::Zoogeography: 486
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoogeografi: 486
description This is the peer reviewed version of the following article: Vindstad, O.P.L., Jepsen, J.U., Yoccoz, N.G., Bjørnstad, O.N., Mesquita, M.d.S. & Ims, R.A. (2019). Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages. Journal of Animal Ecology, 88 (8), 1134-1145, which has been published in final form at https://doi.org/10.1111/1365-2656.12959 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions . Spatial synchrony in population dynamics can be caused by dispersal or spatially correlated variation in environmental factors like weather (Moran effect). Distinguishing between these mechanisms is challenging for natural populations, and the study of dispersal‐induced synchrony in particular has been dominated by theoretical modelling and laboratory experiments. The goal of the present study was to evaluate the evidence for dispersal as a cause of meso‐scale (distances of tens of kilometres) spatial synchrony in natural populations of the two cyclic geometrid moths Epirrita autumnata and Operophtera brumata in sub‐arctic mountain birch forest in northern Norway. To infer the role of dispersal in geometrid synchrony, we applied three complementary approaches, namely estimating the effect of design‐based dispersal barriers (open sea) on synchrony, comparing the strength of synchrony between E. autumnata (winged adults) and the less dispersive O. brumata (wingless adult females), and relating the directionality (anisotropy) of synchrony to the predominant wind directions during spring, when geometrid larvae engage in windborne dispersal (ballooning). The estimated effect of dispersal barriers on synchrony was almost three times stronger for the less dispersive O. brumata than E. autumnata . Inter‐site synchrony was also weakest for O. brumata at all spatial lags. Both observations argue for adult dispersal as an important synchronizing mechanism at the spatial scales considered. Further, synchrony in both moth species showed distinct anisotropy and was most spatially extensive parallel to the east–west axis, coinciding closely to the overall dominant wind direction. This argues for a synchronizing effect of windborne larval dispersal. Congruent with most extensive dispersal along the east–west axis, E. autumnata also showed evidence for a travelling wave moving southwards at a speed of 50–80 km/year. Our results suggest that dispersal processes can leave clear signatures in both the strength and directionality of synchrony in field populations, and highlight wind‐driven dispersal as promising avenue for further research on spatial synchrony in natural insect populations.
format Article in Journal/Newspaper
author Vindstad, Ole Petter Laksforsmo
Jepsen, Jane Uhd
Yoccoz, Nigel Gilles
Bjørnstad, Ottar Nordal
Mesquita, Michel d. S.
Ims, Rolf Anker
author_facet Vindstad, Ole Petter Laksforsmo
Jepsen, Jane Uhd
Yoccoz, Nigel Gilles
Bjørnstad, Ottar Nordal
Mesquita, Michel d. S.
Ims, Rolf Anker
author_sort Vindstad, Ole Petter Laksforsmo
title Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages
title_short Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages
title_full Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages
title_fullStr Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages
title_full_unstemmed Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages
title_sort spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages
publisher Wiley
publishDate 2019
url https://hdl.handle.net/10037/16982
https://doi.org/10.1111/1365-2656.12959
long_lat ENVELOPE(13.004,13.004,67.959,67.959)
geographic Arctic
Norway
Vindstad
geographic_facet Arctic
Norway
Vindstad
genre Arctic
Arctic
Northern Norway
genre_facet Arctic
Arctic
Northern Norway
op_relation Journal of Animal Ecology
info:eu-repo/grantAgreement/RCN/KLIMAFORSK/244454/Norway/What comes after the new pest? Ecosystem transitions following insect pest outbreaks induced by climate change in the European high North//
info:eu-repo/grantAgreement/RCN/FRIBIO/171026/Norway/Inferring regional patterns from local dynamics using spatially explicit simulation modelling and remote sensing data//
info:eu-repo/grantAgreement/RCN/NORKLIMA/184885/Norway/Climate warming and insect outbreaks in sub-arctic birch forest//
Vindstad, O.P.L., Jepsen, J.U., Yoccoz, N.G., Bjørnstad, O.N., Mesquita, M.d.S. & Ims, R.A. (2019). Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages. Journal of Animal Ecology, 88 (8), 1134-1145. https://doi.org/10.1111/1365-2656.12959
FRIDAID 1684705
doi:10.1111/1365-2656.12959
0021-8790
1365-2656
https://hdl.handle.net/10037/16982
op_rights openAccess
© 2019 The Authors. Journal of Animal Ecology. © 2019 British Ecological Society
op_doi https://doi.org/10.1111/1365-2656.12959
container_title Journal of Animal Ecology
container_volume 88
container_issue 8
container_start_page 1134
op_container_end_page 1145
_version_ 1766300302189789184
spelling ftunivtroemsoe:oai:munin.uit.no:10037/16982 2023-05-15T14:26:51+02:00 Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages Vindstad, Ole Petter Laksforsmo Jepsen, Jane Uhd Yoccoz, Nigel Gilles Bjørnstad, Ottar Nordal Mesquita, Michel d. S. Ims, Rolf Anker 2019-02-08 https://hdl.handle.net/10037/16982 https://doi.org/10.1111/1365-2656.12959 eng eng Wiley Journal of Animal Ecology info:eu-repo/grantAgreement/RCN/KLIMAFORSK/244454/Norway/What comes after the new pest? Ecosystem transitions following insect pest outbreaks induced by climate change in the European high North// info:eu-repo/grantAgreement/RCN/FRIBIO/171026/Norway/Inferring regional patterns from local dynamics using spatially explicit simulation modelling and remote sensing data// info:eu-repo/grantAgreement/RCN/NORKLIMA/184885/Norway/Climate warming and insect outbreaks in sub-arctic birch forest// Vindstad, O.P.L., Jepsen, J.U., Yoccoz, N.G., Bjørnstad, O.N., Mesquita, M.d.S. & Ims, R.A. (2019). Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages. Journal of Animal Ecology, 88 (8), 1134-1145. https://doi.org/10.1111/1365-2656.12959 FRIDAID 1684705 doi:10.1111/1365-2656.12959 0021-8790 1365-2656 https://hdl.handle.net/10037/16982 openAccess © 2019 The Authors. Journal of Animal Ecology. © 2019 British Ecological Society VDP::Mathematics and natural science: 400::Zoology and botany: 480::Zoogeography: 486 VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoogeografi: 486 Journal article Tidsskriftartikkel Peer reviewed acceptedVersion 2019 ftunivtroemsoe https://doi.org/10.1111/1365-2656.12959 2021-06-25T17:56:59Z This is the peer reviewed version of the following article: Vindstad, O.P.L., Jepsen, J.U., Yoccoz, N.G., Bjørnstad, O.N., Mesquita, M.d.S. & Ims, R.A. (2019). Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages. Journal of Animal Ecology, 88 (8), 1134-1145, which has been published in final form at https://doi.org/10.1111/1365-2656.12959 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions . Spatial synchrony in population dynamics can be caused by dispersal or spatially correlated variation in environmental factors like weather (Moran effect). Distinguishing between these mechanisms is challenging for natural populations, and the study of dispersal‐induced synchrony in particular has been dominated by theoretical modelling and laboratory experiments. The goal of the present study was to evaluate the evidence for dispersal as a cause of meso‐scale (distances of tens of kilometres) spatial synchrony in natural populations of the two cyclic geometrid moths Epirrita autumnata and Operophtera brumata in sub‐arctic mountain birch forest in northern Norway. To infer the role of dispersal in geometrid synchrony, we applied three complementary approaches, namely estimating the effect of design‐based dispersal barriers (open sea) on synchrony, comparing the strength of synchrony between E. autumnata (winged adults) and the less dispersive O. brumata (wingless adult females), and relating the directionality (anisotropy) of synchrony to the predominant wind directions during spring, when geometrid larvae engage in windborne dispersal (ballooning). The estimated effect of dispersal barriers on synchrony was almost three times stronger for the less dispersive O. brumata than E. autumnata . Inter‐site synchrony was also weakest for O. brumata at all spatial lags. Both observations argue for adult dispersal as an important synchronizing mechanism at the spatial scales considered. Further, synchrony in both moth species showed distinct anisotropy and was most spatially extensive parallel to the east–west axis, coinciding closely to the overall dominant wind direction. This argues for a synchronizing effect of windborne larval dispersal. Congruent with most extensive dispersal along the east–west axis, E. autumnata also showed evidence for a travelling wave moving southwards at a speed of 50–80 km/year. Our results suggest that dispersal processes can leave clear signatures in both the strength and directionality of synchrony in field populations, and highlight wind‐driven dispersal as promising avenue for further research on spatial synchrony in natural insect populations. Article in Journal/Newspaper Arctic Arctic Northern Norway University of Tromsø: Munin Open Research Archive Arctic Norway Vindstad ENVELOPE(13.004,13.004,67.959,67.959) Journal of Animal Ecology 88 8 1134 1145