Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography

Source at https://doi.org/10.1109/TGRS.2018.2847026 . In ionospheric tomography, the atmospheric electron density is reconstructed from different electron density related measurements, most often from ground-based measurements of satellite signals. Typically, ionospheric tomography suffers from two...

Full description

Bibliographic Details
Published in:IEEE Transactions on Geoscience and Remote Sensing
Main Authors: Norberg, J., Vierinen, Juha, Roininen, L, Orispää, M., Kauristie, K, Rideout, W., Coster, A. J., Lehtinen, M
Format: Article in Journal/Newspaper
Language:English
Published: IEEE 2018
Subjects:
Online Access:https://hdl.handle.net/10037/15387
https://doi.org/10.1109/TGRS.2018.2847026
_version_ 1829308067698704384
author Norberg, J.
Vierinen, Juha
Roininen, L
Orispää, M.
Kauristie, K
Rideout, W.
Coster, A. J.
Lehtinen, M
author_facet Norberg, J.
Vierinen, Juha
Roininen, L
Orispää, M.
Kauristie, K
Rideout, W.
Coster, A. J.
Lehtinen, M
author_sort Norberg, J.
collection University of Tromsø: Munin Open Research Archive
container_issue 12
container_start_page 7009
container_title IEEE Transactions on Geoscience and Remote Sensing
container_volume 56
description Source at https://doi.org/10.1109/TGRS.2018.2847026 . In ionospheric tomography, the atmospheric electron density is reconstructed from different electron density related measurements, most often from ground-based measurements of satellite signals. Typically, ionospheric tomography suffers from two major complications. First, the information provided by measurements is insufficient and additional information is required to obtain a unique solution. Second, with necessary spatial and temporal resolutions, the problem becomes very high dimensional, and hence, computationally infeasible. With Bayesian framework, the required additional information can be given with prior probability distributions. The approach then provides physically quantifiable probabilistic interpretation for all model variables. Here, Gaussian Markov random fields (GMRFs) are used for constructing the prior electron density distribution. The use of GMRF introduces sparsity to the linear system, making the problem computationally feasible. The method is demonstrated over Fennoscandia with measurements from global navigation satellite system (GNSS) and low Earth orbit (LEO) satellite receiver networks, GNSS occultation receivers, LEO satellite Langmuir probes, and ionosonde and incoherent scatter radar measurements.
format Article in Journal/Newspaper
genre Fennoscandia
genre_facet Fennoscandia
geographic Langmuir
geographic_facet Langmuir
id ftunivtroemsoe:oai:munin.uit.no:10037/15387
institution Open Polar
language English
long_lat ENVELOPE(-67.150,-67.150,-66.967,-66.967)
op_collection_id ftunivtroemsoe
op_container_end_page 7021
op_doi https://doi.org/10.1109/TGRS.2018.2847026
op_relation IEEE Transactions on Geoscience and Remote Sensing
FRIDAID 1586178
doi:10.1109/TGRS.2018.2847026
https://hdl.handle.net/10037/15387
op_rights openAccess
publishDate 2018
publisher IEEE
record_format openpolar
spelling ftunivtroemsoe:oai:munin.uit.no:10037/15387 2025-04-13T14:18:33+00:00 Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography Norberg, J. Vierinen, Juha Roininen, L Orispää, M. Kauristie, K Rideout, W. Coster, A. J. Lehtinen, M 2018-08-22 https://hdl.handle.net/10037/15387 https://doi.org/10.1109/TGRS.2018.2847026 eng eng IEEE IEEE Transactions on Geoscience and Remote Sensing FRIDAID 1586178 doi:10.1109/TGRS.2018.2847026 https://hdl.handle.net/10037/15387 openAccess VDP::Mathematics and natural science: 400::Geosciences: 450::Other geosciences: 469 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Andre geofag: 469 VDP::Mathematics and natural science: 400::Physics: 430::Astrophysics astronomy: 438 VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Astrofysikk astronomi: 438 Bayesian Gaussian Markov random fields (GMRFs) Ionospheric tomography Multi-instrument Journal article Tidsskriftartikkel Peer reviewed 2018 ftunivtroemsoe https://doi.org/10.1109/TGRS.2018.2847026 2025-03-14T05:17:56Z Source at https://doi.org/10.1109/TGRS.2018.2847026 . In ionospheric tomography, the atmospheric electron density is reconstructed from different electron density related measurements, most often from ground-based measurements of satellite signals. Typically, ionospheric tomography suffers from two major complications. First, the information provided by measurements is insufficient and additional information is required to obtain a unique solution. Second, with necessary spatial and temporal resolutions, the problem becomes very high dimensional, and hence, computationally infeasible. With Bayesian framework, the required additional information can be given with prior probability distributions. The approach then provides physically quantifiable probabilistic interpretation for all model variables. Here, Gaussian Markov random fields (GMRFs) are used for constructing the prior electron density distribution. The use of GMRF introduces sparsity to the linear system, making the problem computationally feasible. The method is demonstrated over Fennoscandia with measurements from global navigation satellite system (GNSS) and low Earth orbit (LEO) satellite receiver networks, GNSS occultation receivers, LEO satellite Langmuir probes, and ionosonde and incoherent scatter radar measurements. Article in Journal/Newspaper Fennoscandia University of Tromsø: Munin Open Research Archive Langmuir ENVELOPE(-67.150,-67.150,-66.967,-66.967) IEEE Transactions on Geoscience and Remote Sensing 56 12 7009 7021
spellingShingle VDP::Mathematics and natural science: 400::Geosciences: 450::Other geosciences: 469
VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Andre geofag: 469
VDP::Mathematics and natural science: 400::Physics: 430::Astrophysics
astronomy: 438
VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Astrofysikk
astronomi: 438
Bayesian
Gaussian Markov random fields (GMRFs)
Ionospheric tomography
Multi-instrument
Norberg, J.
Vierinen, Juha
Roininen, L
Orispää, M.
Kauristie, K
Rideout, W.
Coster, A. J.
Lehtinen, M
Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography
title Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography
title_full Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography
title_fullStr Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography
title_full_unstemmed Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography
title_short Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography
title_sort gaussian markov random field priors in ionospheric 3d multi-instrument tomography
topic VDP::Mathematics and natural science: 400::Geosciences: 450::Other geosciences: 469
VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Andre geofag: 469
VDP::Mathematics and natural science: 400::Physics: 430::Astrophysics
astronomy: 438
VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Astrofysikk
astronomi: 438
Bayesian
Gaussian Markov random fields (GMRFs)
Ionospheric tomography
Multi-instrument
topic_facet VDP::Mathematics and natural science: 400::Geosciences: 450::Other geosciences: 469
VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Andre geofag: 469
VDP::Mathematics and natural science: 400::Physics: 430::Astrophysics
astronomy: 438
VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Astrofysikk
astronomi: 438
Bayesian
Gaussian Markov random fields (GMRFs)
Ionospheric tomography
Multi-instrument
url https://hdl.handle.net/10037/15387
https://doi.org/10.1109/TGRS.2018.2847026