Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice

Source at https://www.vde-verlag.de/proceedings-en/454636136.html . In this paper, we investigated the capabilities of the Gaussian Process Regression (GPR) algorithm in predicting of two quad-polarimetric parameters (relevant for sea ice analysis) from 6-dimensional dual-polarimetric input vectors....

Full description

Bibliographic Details
Main Authors: Blix, Katalin, Espeseth, Martine, Eltoft, Torbjørn
Format: Article in Journal/Newspaper
Language:English
Published: VDE VERLAG GMBH 2018
Subjects:
Online Access:https://hdl.handle.net/10037/14787
_version_ 1829303154054791168
author Blix, Katalin
Espeseth, Martine
Eltoft, Torbjørn
author_facet Blix, Katalin
Espeseth, Martine
Eltoft, Torbjørn
author_sort Blix, Katalin
collection University of Tromsø: Munin Open Research Archive
description Source at https://www.vde-verlag.de/proceedings-en/454636136.html . In this paper, we investigated the capabilities of the Gaussian Process Regression (GPR) algorithm in predicting of two quad-polarimetric parameters (relevant for sea ice analysis) from 6-dimensional dual-polarimetric input vectors. The GRP is trained on few hundred samples selected randomly from an image subset, and tested on the entire image. The performance is assessed by visual comparisons, and by quantifying two regression performance statistical measures. The results of the regression showed big variations from scene to scene, and between the estimated output parameters, but the overall assessment is that the method gave surprisingly good correspondence to the real quad-polarimetric parameters.
format Article in Journal/Newspaper
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
id ftunivtroemsoe:oai:munin.uit.no:10037/14787
institution Open Polar
language English
op_collection_id ftunivtroemsoe
op_relation Electronic proceedings (EUSAR)
info:eu-repo/grantAgreement/RCN/SFI/237906/Norway/Centre for Integrated Remote Sensing and Forecasting for Arctic Operations/CIRFA/
FRIDAID 1627467
https://hdl.handle.net/10037/14787
op_rights openAccess
publishDate 2018
publisher VDE VERLAG GMBH
record_format openpolar
spelling ftunivtroemsoe:oai:munin.uit.no:10037/14787 2025-04-13T14:11:25+00:00 Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice Blix, Katalin Espeseth, Martine Eltoft, Torbjørn 2018-06 https://hdl.handle.net/10037/14787 eng eng VDE VERLAG GMBH Electronic proceedings (EUSAR) info:eu-repo/grantAgreement/RCN/SFI/237906/Norway/Centre for Integrated Remote Sensing and Forecasting for Arctic Operations/CIRFA/ FRIDAID 1627467 https://hdl.handle.net/10037/14787 openAccess VDP::Technology: 500::Environmental engineering: 610 VDP::Teknologi: 500::Miljøteknologi: 610 VDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452 Sea ice Gaussian Process Regression Machine Learning Journal article Tidsskriftartikkel Peer reviewed 2018 ftunivtroemsoe 2025-03-14T05:17:56Z Source at https://www.vde-verlag.de/proceedings-en/454636136.html . In this paper, we investigated the capabilities of the Gaussian Process Regression (GPR) algorithm in predicting of two quad-polarimetric parameters (relevant for sea ice analysis) from 6-dimensional dual-polarimetric input vectors. The GRP is trained on few hundred samples selected randomly from an image subset, and tested on the entire image. The performance is assessed by visual comparisons, and by quantifying two regression performance statistical measures. The results of the regression showed big variations from scene to scene, and between the estimated output parameters, but the overall assessment is that the method gave surprisingly good correspondence to the real quad-polarimetric parameters. Article in Journal/Newspaper Arctic Sea ice University of Tromsø: Munin Open Research Archive
spellingShingle VDP::Technology: 500::Environmental engineering: 610
VDP::Teknologi: 500::Miljøteknologi: 610
VDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452
VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452
Sea ice
Gaussian Process Regression
Machine Learning
Blix, Katalin
Espeseth, Martine
Eltoft, Torbjørn
Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
title Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
title_full Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
title_fullStr Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
title_full_unstemmed Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
title_short Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
title_sort machine learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
topic VDP::Technology: 500::Environmental engineering: 610
VDP::Teknologi: 500::Miljøteknologi: 610
VDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452
VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452
Sea ice
Gaussian Process Regression
Machine Learning
topic_facet VDP::Technology: 500::Environmental engineering: 610
VDP::Teknologi: 500::Miljøteknologi: 610
VDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452
VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452
Sea ice
Gaussian Process Regression
Machine Learning
url https://hdl.handle.net/10037/14787