Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
Source at https://www.vde-verlag.de/proceedings-en/454636136.html . In this paper, we investigated the capabilities of the Gaussian Process Regression (GPR) algorithm in predicting of two quad-polarimetric parameters (relevant for sea ice analysis) from 6-dimensional dual-polarimetric input vectors....
Main Authors: | , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
VDE VERLAG GMBH
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10037/14787 |
_version_ | 1829303154054791168 |
---|---|
author | Blix, Katalin Espeseth, Martine Eltoft, Torbjørn |
author_facet | Blix, Katalin Espeseth, Martine Eltoft, Torbjørn |
author_sort | Blix, Katalin |
collection | University of Tromsø: Munin Open Research Archive |
description | Source at https://www.vde-verlag.de/proceedings-en/454636136.html . In this paper, we investigated the capabilities of the Gaussian Process Regression (GPR) algorithm in predicting of two quad-polarimetric parameters (relevant for sea ice analysis) from 6-dimensional dual-polarimetric input vectors. The GRP is trained on few hundred samples selected randomly from an image subset, and tested on the entire image. The performance is assessed by visual comparisons, and by quantifying two regression performance statistical measures. The results of the regression showed big variations from scene to scene, and between the estimated output parameters, but the overall assessment is that the method gave surprisingly good correspondence to the real quad-polarimetric parameters. |
format | Article in Journal/Newspaper |
genre | Arctic Sea ice |
genre_facet | Arctic Sea ice |
id | ftunivtroemsoe:oai:munin.uit.no:10037/14787 |
institution | Open Polar |
language | English |
op_collection_id | ftunivtroemsoe |
op_relation | Electronic proceedings (EUSAR) info:eu-repo/grantAgreement/RCN/SFI/237906/Norway/Centre for Integrated Remote Sensing and Forecasting for Arctic Operations/CIRFA/ FRIDAID 1627467 https://hdl.handle.net/10037/14787 |
op_rights | openAccess |
publishDate | 2018 |
publisher | VDE VERLAG GMBH |
record_format | openpolar |
spelling | ftunivtroemsoe:oai:munin.uit.no:10037/14787 2025-04-13T14:11:25+00:00 Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice Blix, Katalin Espeseth, Martine Eltoft, Torbjørn 2018-06 https://hdl.handle.net/10037/14787 eng eng VDE VERLAG GMBH Electronic proceedings (EUSAR) info:eu-repo/grantAgreement/RCN/SFI/237906/Norway/Centre for Integrated Remote Sensing and Forecasting for Arctic Operations/CIRFA/ FRIDAID 1627467 https://hdl.handle.net/10037/14787 openAccess VDP::Technology: 500::Environmental engineering: 610 VDP::Teknologi: 500::Miljøteknologi: 610 VDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452 Sea ice Gaussian Process Regression Machine Learning Journal article Tidsskriftartikkel Peer reviewed 2018 ftunivtroemsoe 2025-03-14T05:17:56Z Source at https://www.vde-verlag.de/proceedings-en/454636136.html . In this paper, we investigated the capabilities of the Gaussian Process Regression (GPR) algorithm in predicting of two quad-polarimetric parameters (relevant for sea ice analysis) from 6-dimensional dual-polarimetric input vectors. The GRP is trained on few hundred samples selected randomly from an image subset, and tested on the entire image. The performance is assessed by visual comparisons, and by quantifying two regression performance statistical measures. The results of the regression showed big variations from scene to scene, and between the estimated output parameters, but the overall assessment is that the method gave surprisingly good correspondence to the real quad-polarimetric parameters. Article in Journal/Newspaper Arctic Sea ice University of Tromsø: Munin Open Research Archive |
spellingShingle | VDP::Technology: 500::Environmental engineering: 610 VDP::Teknologi: 500::Miljøteknologi: 610 VDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452 Sea ice Gaussian Process Regression Machine Learning Blix, Katalin Espeseth, Martine Eltoft, Torbjørn Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice |
title | Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice |
title_full | Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice |
title_fullStr | Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice |
title_full_unstemmed | Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice |
title_short | Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice |
title_sort | machine learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice |
topic | VDP::Technology: 500::Environmental engineering: 610 VDP::Teknologi: 500::Miljøteknologi: 610 VDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452 Sea ice Gaussian Process Regression Machine Learning |
topic_facet | VDP::Technology: 500::Environmental engineering: 610 VDP::Teknologi: 500::Miljøteknologi: 610 VDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452 VDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452 Sea ice Gaussian Process Regression Machine Learning |
url | https://hdl.handle.net/10037/14787 |