Calanus glacialis and C. finmarchicus in a warming Arctic Implications of increasing temperature at the individual and population level

The papers I, III and IV of this thesis are not available in Munin. Paper I: Grote U., Pasternak A., Arashkevich E., Halvorsen E., Nikishina A.: "Thermal response of ingestion and egestion rates in the Arctic copepod Calanus glacialis and possible metabolic consequences in a warming ocean"...

Full description

Bibliographic Details
Main Author: Grote, Ulrike
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: UiT The Arctic University of Norway 2017
Subjects:
Online Access:https://hdl.handle.net/10037/10739
id ftunivtroemsoe:oai:munin.uit.no:10037/10739
record_format openpolar
institution Open Polar
collection University of Tromsø: Munin Open Research Archive
op_collection_id ftunivtroemsoe
language English
topic VDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497
VDP::Mathematics and natural science: 400::Zoology and botany: 480::Zoophysiology and comparative physiology: 483
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoofysiologi og komparativ fysiologi: 483
DOKTOR-002
spellingShingle VDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497
VDP::Mathematics and natural science: 400::Zoology and botany: 480::Zoophysiology and comparative physiology: 483
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoofysiologi og komparativ fysiologi: 483
DOKTOR-002
Grote, Ulrike
Calanus glacialis and C. finmarchicus in a warming Arctic Implications of increasing temperature at the individual and population level
topic_facet VDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497
VDP::Mathematics and natural science: 400::Zoology and botany: 480::Zoophysiology and comparative physiology: 483
VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoofysiologi og komparativ fysiologi: 483
DOKTOR-002
description The papers I, III and IV of this thesis are not available in Munin. Paper I: Grote U., Pasternak A., Arashkevich E., Halvorsen E., Nikishina A.: "Thermal response of ingestion and egestion rates in the Arctic copepod Calanus glacialis and possible metabolic consequences in a warming ocean". Available in Polar Biology 2015, 38:1025-1033. Paper III: Pasternak, A.F., Arashkevich, E.G., Grote, U., Nikishina, A.B., Solovyev, K.A.: Different effects of increased water temperature on egg production of Calanus finmarchicus and C. glacialis. Available in Oceanology 2013, 53(5):547-553. Paper IV: Grote U., Eisenhauer L.: "Modelling population level responses of Calanus glacialis and C. finmarchicus under different climate warming regimes in the Barents Sea area". (Manuscript). Climate change is particularly pronounced in the Arctic and water temperatures are predicted to increase substantially. This has important implications for Arctic marine organism, especially ectotherms, such as copepods. The calanoid copepods Calanus glacialis and C. finmarchicus are key species of different pelagic food webs at high latitudes and changes in temperature will likely affect them differently, further affecting higher trophic level organisms feeding on Calanus spp. One objective of this thesis was therefore to investigate physiological processes affecting growth and reproduction, such as feeding, egestion, respiration, and egg production rates of especially C. glacialis in response to temperature (0 10 °C) and to discuss the potential metabolic balance. The other objective of this thesis was to investigate the effect of increasing temperature on C. glacialis and C. finmarchicus populations using the SINMOD model. C. glacialis ingestion and egestion rates increased linearly with temperature in one experiment, while ingestion and respiration rates reached a thermal optimum at 2.5 °C and 6 °C, respectively, in another experiment, indicating plasticity in feeding responses, likely due to local adaptation. Comparing the Q10 values of ingestion, egestion and respiration rates of C. glacialis indicates that the physiological processes connected to metabolic losses (egestion, respiration) have a higher thermal sensitivity than the one connected to metabolic gains (feeding), resulting in relatively less energy being available for growth and reproduction at warmer temperatures. A direct comparison of carbon specific ingestion and respiration rates of C. glacialis indicates a metabolic mismatch at temperatures above 5-6 °C, potentially resulting in negative effects on growth and survival. At temperatures above 5 °C, egg production rates of C. glacialis decreased, indicating that metabolic balance was negatively affected by increasing temperature, while egg production rates of C. finmarchicus increased with temperature. The simulated response of Calanus spp. populations with increasing temperature suggests that C. finmarchicus biomass and net production will increase in the southern Barents Sea. C. glacialis biomass and net production will likely increase in the northern Barents Sea up to summer seawater temperatures of 5-6 °C. Further warming will reduce C. glacialis biomass and net production due to the observed metabolic mismatch negatively affecting growth. Changes in food availability due to nutrient limitation can have pronounced effects on population biomass and productivity as well, suppressing the potentially positive effects of initially increasing temperatures.
format Doctoral or Postdoctoral Thesis
author Grote, Ulrike
author_facet Grote, Ulrike
author_sort Grote, Ulrike
title Calanus glacialis and C. finmarchicus in a warming Arctic Implications of increasing temperature at the individual and population level
title_short Calanus glacialis and C. finmarchicus in a warming Arctic Implications of increasing temperature at the individual and population level
title_full Calanus glacialis and C. finmarchicus in a warming Arctic Implications of increasing temperature at the individual and population level
title_fullStr Calanus glacialis and C. finmarchicus in a warming Arctic Implications of increasing temperature at the individual and population level
title_full_unstemmed Calanus glacialis and C. finmarchicus in a warming Arctic Implications of increasing temperature at the individual and population level
title_sort calanus glacialis and c. finmarchicus in a warming arctic implications of increasing temperature at the individual and population level
publisher UiT The Arctic University of Norway
publishDate 2017
url https://hdl.handle.net/10037/10739
geographic Arctic
Barents Sea
geographic_facet Arctic
Barents Sea
genre Arctic copepod
Arctic
Barents Sea
Calanus finmarchicus
Calanus glacialis
Climate change
Copepods
genre_facet Arctic copepod
Arctic
Barents Sea
Calanus finmarchicus
Calanus glacialis
Climate change
Copepods
op_relation 978-82-8266-135-5
https://hdl.handle.net/10037/10739
op_rights openAccess
Copyright 2017 The Author(s)
_version_ 1766304391978024960
spelling ftunivtroemsoe:oai:munin.uit.no:10037/10739 2023-05-15T14:30:34+02:00 Calanus glacialis and C. finmarchicus in a warming Arctic Implications of increasing temperature at the individual and population level Grote, Ulrike 2017-03-21 https://hdl.handle.net/10037/10739 eng eng UiT The Arctic University of Norway UiT Norges arktiske universitet 978-82-8266-135-5 https://hdl.handle.net/10037/10739 openAccess Copyright 2017 The Author(s) VDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497 VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497 VDP::Mathematics and natural science: 400::Zoology and botany: 480::Zoophysiology and comparative physiology: 483 VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoofysiologi og komparativ fysiologi: 483 DOKTOR-002 Doctoral thesis Doktorgradsavhandling 2017 ftunivtroemsoe 2021-06-25T17:55:12Z The papers I, III and IV of this thesis are not available in Munin. Paper I: Grote U., Pasternak A., Arashkevich E., Halvorsen E., Nikishina A.: "Thermal response of ingestion and egestion rates in the Arctic copepod Calanus glacialis and possible metabolic consequences in a warming ocean". Available in Polar Biology 2015, 38:1025-1033. Paper III: Pasternak, A.F., Arashkevich, E.G., Grote, U., Nikishina, A.B., Solovyev, K.A.: Different effects of increased water temperature on egg production of Calanus finmarchicus and C. glacialis. Available in Oceanology 2013, 53(5):547-553. Paper IV: Grote U., Eisenhauer L.: "Modelling population level responses of Calanus glacialis and C. finmarchicus under different climate warming regimes in the Barents Sea area". (Manuscript). Climate change is particularly pronounced in the Arctic and water temperatures are predicted to increase substantially. This has important implications for Arctic marine organism, especially ectotherms, such as copepods. The calanoid copepods Calanus glacialis and C. finmarchicus are key species of different pelagic food webs at high latitudes and changes in temperature will likely affect them differently, further affecting higher trophic level organisms feeding on Calanus spp. One objective of this thesis was therefore to investigate physiological processes affecting growth and reproduction, such as feeding, egestion, respiration, and egg production rates of especially C. glacialis in response to temperature (0 10 °C) and to discuss the potential metabolic balance. The other objective of this thesis was to investigate the effect of increasing temperature on C. glacialis and C. finmarchicus populations using the SINMOD model. C. glacialis ingestion and egestion rates increased linearly with temperature in one experiment, while ingestion and respiration rates reached a thermal optimum at 2.5 °C and 6 °C, respectively, in another experiment, indicating plasticity in feeding responses, likely due to local adaptation. Comparing the Q10 values of ingestion, egestion and respiration rates of C. glacialis indicates that the physiological processes connected to metabolic losses (egestion, respiration) have a higher thermal sensitivity than the one connected to metabolic gains (feeding), resulting in relatively less energy being available for growth and reproduction at warmer temperatures. A direct comparison of carbon specific ingestion and respiration rates of C. glacialis indicates a metabolic mismatch at temperatures above 5-6 °C, potentially resulting in negative effects on growth and survival. At temperatures above 5 °C, egg production rates of C. glacialis decreased, indicating that metabolic balance was negatively affected by increasing temperature, while egg production rates of C. finmarchicus increased with temperature. The simulated response of Calanus spp. populations with increasing temperature suggests that C. finmarchicus biomass and net production will increase in the southern Barents Sea. C. glacialis biomass and net production will likely increase in the northern Barents Sea up to summer seawater temperatures of 5-6 °C. Further warming will reduce C. glacialis biomass and net production due to the observed metabolic mismatch negatively affecting growth. Changes in food availability due to nutrient limitation can have pronounced effects on population biomass and productivity as well, suppressing the potentially positive effects of initially increasing temperatures. Doctoral or Postdoctoral Thesis Arctic copepod Arctic Barents Sea Calanus finmarchicus Calanus glacialis Climate change Copepods University of Tromsø: Munin Open Research Archive Arctic Barents Sea