Summary: | Trends in solid and total precipitation, as well as in the ratio of solid to total precipitation (hereinafter S/T ratio), in the Canadian Arctic in recent decades have been investigated. In addition, the influence of air temperature and circulation factors (atmospheric and oceanic) on the above-mentioned precipitation characteristics have been examined. Recently updated and adjusted data by the Canadian Climate Centre from 16 stations located in the Canadian Arctic and two stations from the sub-Arctic were used for the investigation. The southern boundary of the study area was taken after Atlas Arktiki (Tresjinkov, A. 1985. Glavnoye Upravlenye Geodeziy i Kartografiy: Moscow; 204 pp). The majority of the data cover the period from 1950 to 1995. A statistically significant increase in all kinds of areally averaged seasonal and annual precipitation for the Canadian Arctic over the period 1950–95 has been found. On the other hand, the S/T ratio did not change significantly, except for summer values, and its behaviour was also in accord with small variations noted in air temperature. An increase in air temperature in the Canadian Arctic most often led to a rise in all kinds of annual precipitation sums, but only when the warmest and coldest years were chosen based on individual stations. The pattern of the relationship is significantly more complicated, and can even be opposite to that presented above, when the sets of the warmest and coldest years are chosen based on the areally averaged annual temperature for the Canadian Arctic. Significantly more stable results of changes were found for the S/T ratio, which in warmer periods was usually lower. However, more detailed and reliable investigations of temperature–precipitation relationships conducted for individual stations showed that though the S/T ratio in warmer periods may well be lower, this only applies to the southern (warmer) part of the Canadian Arctic (<70 °N). During periods with high positive values of the North Atlantic Oscillation Index (NAOI), a decrease in precipitation is observed in the south-eastern part of the Canadian Arctic, i.e. in the area where strong cooling was also observed. During El Niño events most of the Canadian Arctic had both greater precipitation and a higher S/T ratio than during La Niña events. The most unequivocal results of precipitation and S/T ratio changes were found for changes in the Arctic Ocean circulation regimes. In almost the whole study area, a lower precipitation and S/T ratio were noted during the anticyclonic circulation regime in the Arctic Ocean.
|