Carbon balance in production forestry in relation to rotation length

The choice of a rotation length is an integral part of even-aged forest management regimes. In this study, we have simulated stand development and carbon pools in four even-aged stands representing the two most common tree species in Fennoscandia, Norway spruce (Picea abies) and Scots pine (Pinus sy...

Full description

Bibliographic Details
Main Authors: Lundmark, Tomas, Poudel, Bishnu Chandra, Stål, Gustav, Nordin, Annika, Sonesson, Johan
Format: Article in Journal/Newspaper
Language:unknown
Published: NRC Research Press (a division of Canadian Science Publishing) 2018
Subjects:
Online Access:http://hdl.handle.net/1807/87544
http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2017-0410
Description
Summary:The choice of a rotation length is an integral part of even-aged forest management regimes. In this study, we have simulated stand development and carbon pools in four even-aged stands representing the two most common tree species in Fennoscandia, Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), growing on high and low productive sites. We hypothesized that increased rotation lengths (+10, +20 and +30 years) in comparison with todayâ s practice would increase forestsâ average carbon stock during a rotation cycle, but decrease the average yield. The results showed that for spruce a moderate increase in rotation length (+10 years) increased both average standing carbon stock and average yield. For the longer alternatives (+20 and +30 years) for spruce and for all pine alternatives prolonging rotation lengths resulted in increased average standing carbon stocks but decreased average yield resulting in decreased carbon storage in forest products and decreased substitution effects. Decreasing the rotation lengths (-10 years) always resulted in both decreased average standing carbon stocks and decreased yields. We conclude that a moderate increase of rotation lengths may slightly increase forestsâ climate benefits for spruce sites but for all other alternatives there was a trade-off between the temporary gain of increasing carbon stocks and the permanent loss in productivity and consequently substitution potential. The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author.