Infrared Emission Measurements of Radiation and Trace Gas Variability in the High Arctic

The objective of this Ph.D. is to investigate the atmospheric radiative budget and composition in the high Arctic using a new (prototype) interferometer. The Canadian Network for the Detection of Atmospheric Change has equipped the Polar Atmospheric Environment Research Laboratory (PEARL) at Eureka,...

Full description

Bibliographic Details
Main Author: Mariani, Zen H.
Other Authors: Strong, Kimberly, Physics
Format: Thesis
Language:unknown
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/1807/80427
id ftunivtoronto:oai:localhost:1807/80427
record_format openpolar
spelling ftunivtoronto:oai:localhost:1807/80427 2023-05-15T14:56:23+02:00 Infrared Emission Measurements of Radiation and Trace Gas Variability in the High Arctic Mariani, Zen H. Strong, Kimberly Physics 2017-12-01T18:00:15Z http://hdl.handle.net/1807/80427 unknown http://hdl.handle.net/1807/80427 Atmospheric Emitted Radiance Interferometer Cloud Radiative Forcing Emission Spectroscopy Fourier Transform Infrared Spectroscopy Total Column Trace Gas Measurements Trace Gas Retrieval Theory 0605 Thesis 2017 ftunivtoronto 2020-06-17T12:08:09Z The objective of this Ph.D. is to investigate the atmospheric radiative budget and composition in the high Arctic using a new (prototype) interferometer. The Canadian Network for the Detection of Atmospheric Change has equipped the Polar Atmospheric Environment Research Laboratory (PEARL) at Eureka, Nunavut (80ยบN, 86ยบW) with an Extended-range Atmospheric Emitted Radiance Interferometer (E-AERI), which was installed in October 2008 at the PEARL Ridge Lab (610 m a.s.l.). The E-AERI measures the infrared (IR) thermal emission of the atmosphere in the 400-3000 cm-1 (3.3-25 μm) spectral region. An older AERI, the Polar AERI (P-AERI), was stationed in Eureka from 2006-2009 and was located at sea level. The impact of clouds and ice crystals on the radiative budget were investigated from two altitudes using these two AERIs. The increased radiance due to the presence of clouds was found to be larger at Eureka than at the Southern Great Plains (SGP), indicating that cloud cover plays an important role in the Arctic's radiative budget. This thesis presents the first measurements of the two surface cooling-to-space windows (at 10 and 20 μm) in the high (> 75o N) Arctic. Distributions of brightness temperatures were filtered based on cloud cover and do not vary in the summer, indicating that the 20 μm window is closed when water vapour is a maximum. Trends in downwelling radiance were found in several spectral microregions corresponding to these cooling-to-space windows and meteorological conditions (temperature, water vapour, cloud cover). Trends at 10 μm during the winter were positive, in the opposite direction, and significantly larger (factor > 3) than any of the seasonal trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. Spectra recorded by the E-AERI were also used to retrieve total column concentrations of O3, CO, CH4, and N2O year-round to fill a gap in the PEARL data series, providing the first continuous ground-based trace gas measurements throughout polar night at Eureka. This work involved the implementation of the SFIT2 retrieval algorithm modified for emission spectra. E-AERI trace gas retrievals were characterized and comparisons to other spectrometers at Eureka are within uncertainties (1-9% differences). An investigation of the diurnal and seasonal cycle of CO was performed to highlight the usefulness of continuous, year-round measurements at Eureka. Ph.D. Thesis Arctic Eureka Nunavut polar night University of Toronto: Research Repository T-Space Arctic Nunavut Eureka ENVELOPE(-85.940,-85.940,79.990,79.990)
institution Open Polar
collection University of Toronto: Research Repository T-Space
op_collection_id ftunivtoronto
language unknown
topic Atmospheric Emitted Radiance Interferometer
Cloud Radiative Forcing
Emission Spectroscopy
Fourier Transform Infrared Spectroscopy
Total Column Trace Gas Measurements
Trace Gas Retrieval Theory
0605
spellingShingle Atmospheric Emitted Radiance Interferometer
Cloud Radiative Forcing
Emission Spectroscopy
Fourier Transform Infrared Spectroscopy
Total Column Trace Gas Measurements
Trace Gas Retrieval Theory
0605
Mariani, Zen H.
Infrared Emission Measurements of Radiation and Trace Gas Variability in the High Arctic
topic_facet Atmospheric Emitted Radiance Interferometer
Cloud Radiative Forcing
Emission Spectroscopy
Fourier Transform Infrared Spectroscopy
Total Column Trace Gas Measurements
Trace Gas Retrieval Theory
0605
description The objective of this Ph.D. is to investigate the atmospheric radiative budget and composition in the high Arctic using a new (prototype) interferometer. The Canadian Network for the Detection of Atmospheric Change has equipped the Polar Atmospheric Environment Research Laboratory (PEARL) at Eureka, Nunavut (80ยบN, 86ยบW) with an Extended-range Atmospheric Emitted Radiance Interferometer (E-AERI), which was installed in October 2008 at the PEARL Ridge Lab (610 m a.s.l.). The E-AERI measures the infrared (IR) thermal emission of the atmosphere in the 400-3000 cm-1 (3.3-25 μm) spectral region. An older AERI, the Polar AERI (P-AERI), was stationed in Eureka from 2006-2009 and was located at sea level. The impact of clouds and ice crystals on the radiative budget were investigated from two altitudes using these two AERIs. The increased radiance due to the presence of clouds was found to be larger at Eureka than at the Southern Great Plains (SGP), indicating that cloud cover plays an important role in the Arctic's radiative budget. This thesis presents the first measurements of the two surface cooling-to-space windows (at 10 and 20 μm) in the high (> 75o N) Arctic. Distributions of brightness temperatures were filtered based on cloud cover and do not vary in the summer, indicating that the 20 μm window is closed when water vapour is a maximum. Trends in downwelling radiance were found in several spectral microregions corresponding to these cooling-to-space windows and meteorological conditions (temperature, water vapour, cloud cover). Trends at 10 μm during the winter were positive, in the opposite direction, and significantly larger (factor > 3) than any of the seasonal trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. Spectra recorded by the E-AERI were also used to retrieve total column concentrations of O3, CO, CH4, and N2O year-round to fill a gap in the PEARL data series, providing the first continuous ground-based trace gas measurements throughout polar night at Eureka. This work involved the implementation of the SFIT2 retrieval algorithm modified for emission spectra. E-AERI trace gas retrievals were characterized and comparisons to other spectrometers at Eureka are within uncertainties (1-9% differences). An investigation of the diurnal and seasonal cycle of CO was performed to highlight the usefulness of continuous, year-round measurements at Eureka. Ph.D.
author2 Strong, Kimberly
Physics
format Thesis
author Mariani, Zen H.
author_facet Mariani, Zen H.
author_sort Mariani, Zen H.
title Infrared Emission Measurements of Radiation and Trace Gas Variability in the High Arctic
title_short Infrared Emission Measurements of Radiation and Trace Gas Variability in the High Arctic
title_full Infrared Emission Measurements of Radiation and Trace Gas Variability in the High Arctic
title_fullStr Infrared Emission Measurements of Radiation and Trace Gas Variability in the High Arctic
title_full_unstemmed Infrared Emission Measurements of Radiation and Trace Gas Variability in the High Arctic
title_sort infrared emission measurements of radiation and trace gas variability in the high arctic
publishDate 2017
url http://hdl.handle.net/1807/80427
long_lat ENVELOPE(-85.940,-85.940,79.990,79.990)
geographic Arctic
Nunavut
Eureka
geographic_facet Arctic
Nunavut
Eureka
genre Arctic
Eureka
Nunavut
polar night
genre_facet Arctic
Eureka
Nunavut
polar night
op_relation http://hdl.handle.net/1807/80427
_version_ 1766328415967772672