Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes

Producing nanomaterials from hazardous wastes for water and soil treatment is of great concern. Here, we produced and fully characterized two novel nanomaterials from sugar beet processing (SBR)- and brick factory-residuals (BFR) and assed their ability for Cd and Cu sorption in water and reducing m...

Full description

Bibliographic Details
Published in:Journal of Hazardous Materials
Main Author: Lashen Z.M., Shams M.S., El-Sheshtawy H.S., Slaný M., Antoniadis V., Yang X., Sharma G., Rinklebe J., Shaheen S.M., Elmahdy S.M.
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/11615/75694
https://doi.org/10.1016/j.jhazmat.2021.128205
Description
Summary:Producing nanomaterials from hazardous wastes for water and soil treatment is of great concern. Here, we produced and fully characterized two novel nanomaterials from sugar beet processing (SBR)- and brick factory-residuals (BFR) and assed their ability for Cd and Cu sorption in water and reducing metal availability in a contaminated soil. The SBR removed up to 99% of Cu and 91% of Cd in water, and exhibited a significantly faster and higher sorption capacity (qmax (g kg−1) = 1111.1 for Cu and 33.3 for Cd) than BFR (qmax (g kg−1) = 33.3 for Cu and 10.0 for Cd), even at acidic pH. Soil metal availability was significantly reduced by SBR (up to 57% for Cu and 86% for Cd) and BFR (up to 36% for Cu and 68% for Cd) compared to the unamended soil. The higher removal efficacy of SBR over BFR could be attributed to its higher alkalinity (pH = 12.5), carbonate content (82%), and specific surface area, as well as the activity of hydroxyl –OH and Si-O groups. The nano-scale SBR and BFR, the former particularly, are novel, of low cost, and environmental friendly amendments that can be used for the remediation of metal-contaminated water and soil. © 2022 Elsevier B.V.