The breakup of East Gondwana : insights from plate modeling, basin analysis, and numerical experiments

During the Early Cretaceous, East Gondwana began to fragment. Due to temporal proximity to the Cretaceous Normal Superchron and a lack of well resolved seafloor fabric, our understanding of this breakup has historically been limited. A new interpretation of the marine magnetic anomalies preserved wi...

Full description

Bibliographic Details
Main Author: Davis, Joshua Kane
Other Authors: Lavier, Luc Louis, Lawver, Lawrence A. (Lawrence Allen), Dalziel, Ian, Gulick, Sean, Norton, Ian
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/2152/61527
https://doi.org/10.15781/T2610W75K
id ftunivtexas:oai:repositories.lib.utexas.edu:2152/61527
record_format openpolar
spelling ftunivtexas:oai:repositories.lib.utexas.edu:2152/61527 2023-05-15T14:03:22+02:00 The breakup of East Gondwana : insights from plate modeling, basin analysis, and numerical experiments Davis, Joshua Kane Lavier, Luc Louis Lawver, Lawrence A. (Lawrence Allen) Dalziel, Ian Gulick, Sean Norton, Ian 2017-05 application/pdf text/csv video/mp4v-es application/vnd.google-earth.kmz application/zip application/vnd.google-earth.kml+xml http://hdl.handle.net/2152/61527 https://doi.org/10.15781/T2610W75K en eng doi:10.15781/T2610W75K http://hdl.handle.net/2152/61527 Indian Ocean Gondwana Enderby Basin Continental rifting Plate tectonics Volcanic margins Magma-poor margins Thesis text 2017 ftunivtexas https://doi.org/10.15781/T2610W75K 2020-12-23T22:08:06Z During the Early Cretaceous, East Gondwana began to fragment. Due to temporal proximity to the Cretaceous Normal Superchron and a lack of well resolved seafloor fabric, our understanding of this breakup has historically been limited. A new interpretation of the marine magnetic anomalies preserved within the Somali Basin, provides insight into the motions of the East Gondwana from the Late Jurassic through the Early Mesozoic. When combined and compared with magnetic anomaly interpretations from coeval regional basins, the timing of East Gondwana breakup can be constrained to begin at M15n (135.76 Ma). Within the Enderby Basin, East Antarctica, oceanic and thinned continental crust preserve a record of this rifting. Previous works have suggested that a wide (500 km) domain of thinned continental crust exists between the present-day coastline and a regional, high-amplitude, magnetic anomaly. We offer an alternative interpretation of the Enderby Basin crustal structure, where much of this postulated continental crust is instead thin, proto-ocean crust. This interpretation is based on the lack of isostatically observable crustal thinning throughout the domain, as would be expected for rifted continental blocks. Throughout much of this domain, the crust instead appears to be rugged, thin (<6 km), and of relatively constant thickness, resembling oceanic crust formed at ultraslow/slow ridges. The preferred tectonic interpretation is that, immediately after continental breakup, magmatic production/emplacement was low and formed this proto-ocean domain. A later reorganization of the magmatic system allowed for normal ocean crust to form and is manifest today as a change in crustal structure and thickness and corresponding magnetic anomaly. Numerical modeling experiments were undertaken to investigate potential influences on melt production during passive continental extension. Factors determined to favor delayed magmatic emplacement include: an initial cool lithosphere geotherm, thin crust, rapid extension rates, low mantle potential temperature, and strong crustal rheology. If magmatic emplacement is sufficiently delayed, these factors may influence formation of a magma-poor margin and/or proto-ocean domain. In the Enderby Basin, Permo-Triassic rifting in the Lambert Graben appears to have previously thinning the continental crust. This pre-breakup thinning may be ultimately responsible for the later formation of the observed proto-ocean domain during East Gondwana breakup. Geological Sciences Thesis Antarc* Antarctica East Antarctica The University of Texas at Austin: Texas ScholarWorks East Antarctica Indian
institution Open Polar
collection The University of Texas at Austin: Texas ScholarWorks
op_collection_id ftunivtexas
language English
topic Indian Ocean
Gondwana
Enderby Basin
Continental rifting
Plate tectonics
Volcanic margins
Magma-poor margins
spellingShingle Indian Ocean
Gondwana
Enderby Basin
Continental rifting
Plate tectonics
Volcanic margins
Magma-poor margins
Davis, Joshua Kane
The breakup of East Gondwana : insights from plate modeling, basin analysis, and numerical experiments
topic_facet Indian Ocean
Gondwana
Enderby Basin
Continental rifting
Plate tectonics
Volcanic margins
Magma-poor margins
description During the Early Cretaceous, East Gondwana began to fragment. Due to temporal proximity to the Cretaceous Normal Superchron and a lack of well resolved seafloor fabric, our understanding of this breakup has historically been limited. A new interpretation of the marine magnetic anomalies preserved within the Somali Basin, provides insight into the motions of the East Gondwana from the Late Jurassic through the Early Mesozoic. When combined and compared with magnetic anomaly interpretations from coeval regional basins, the timing of East Gondwana breakup can be constrained to begin at M15n (135.76 Ma). Within the Enderby Basin, East Antarctica, oceanic and thinned continental crust preserve a record of this rifting. Previous works have suggested that a wide (500 km) domain of thinned continental crust exists between the present-day coastline and a regional, high-amplitude, magnetic anomaly. We offer an alternative interpretation of the Enderby Basin crustal structure, where much of this postulated continental crust is instead thin, proto-ocean crust. This interpretation is based on the lack of isostatically observable crustal thinning throughout the domain, as would be expected for rifted continental blocks. Throughout much of this domain, the crust instead appears to be rugged, thin (<6 km), and of relatively constant thickness, resembling oceanic crust formed at ultraslow/slow ridges. The preferred tectonic interpretation is that, immediately after continental breakup, magmatic production/emplacement was low and formed this proto-ocean domain. A later reorganization of the magmatic system allowed for normal ocean crust to form and is manifest today as a change in crustal structure and thickness and corresponding magnetic anomaly. Numerical modeling experiments were undertaken to investigate potential influences on melt production during passive continental extension. Factors determined to favor delayed magmatic emplacement include: an initial cool lithosphere geotherm, thin crust, rapid extension rates, low mantle potential temperature, and strong crustal rheology. If magmatic emplacement is sufficiently delayed, these factors may influence formation of a magma-poor margin and/or proto-ocean domain. In the Enderby Basin, Permo-Triassic rifting in the Lambert Graben appears to have previously thinning the continental crust. This pre-breakup thinning may be ultimately responsible for the later formation of the observed proto-ocean domain during East Gondwana breakup. Geological Sciences
author2 Lavier, Luc Louis
Lawver, Lawrence A. (Lawrence Allen)
Dalziel, Ian
Gulick, Sean
Norton, Ian
format Thesis
author Davis, Joshua Kane
author_facet Davis, Joshua Kane
author_sort Davis, Joshua Kane
title The breakup of East Gondwana : insights from plate modeling, basin analysis, and numerical experiments
title_short The breakup of East Gondwana : insights from plate modeling, basin analysis, and numerical experiments
title_full The breakup of East Gondwana : insights from plate modeling, basin analysis, and numerical experiments
title_fullStr The breakup of East Gondwana : insights from plate modeling, basin analysis, and numerical experiments
title_full_unstemmed The breakup of East Gondwana : insights from plate modeling, basin analysis, and numerical experiments
title_sort breakup of east gondwana : insights from plate modeling, basin analysis, and numerical experiments
publishDate 2017
url http://hdl.handle.net/2152/61527
https://doi.org/10.15781/T2610W75K
geographic East Antarctica
Indian
geographic_facet East Antarctica
Indian
genre Antarc*
Antarctica
East Antarctica
genre_facet Antarc*
Antarctica
East Antarctica
op_relation doi:10.15781/T2610W75K
http://hdl.handle.net/2152/61527
op_doi https://doi.org/10.15781/T2610W75K
_version_ 1766274015625740288