Adaptive Strategies in Plant Physiology: Analyzing Duckweed (Lemna minor) Plasticity and Enhancing Potato Stress Resilience

This thesis delves into the impact of stress on plants amid climate change, exploring strategies for mitigation. The initial focus is on duckweed stress tolerance, evaluating how different ecotypes respond to various stressors over three weeks. The L. minor ecotype from the subarctic climate, Norway...

Full description

Bibliographic Details
Main Author: Sichterman, Megan J
Format: Text
Language:unknown
Published: TRACE: Tennessee Research and Creative Exchange 2023
Subjects:
Online Access:https://trace.tennessee.edu/utk_gradthes/10123
https://trace.tennessee.edu/context/utk_gradthes/article/11319/viewcontent/Megan_Sichterman_Thesis11.22.pdf
id ftunivtennknox:oai:trace.tennessee.edu:utk_gradthes-11319
record_format openpolar
spelling ftunivtennknox:oai:trace.tennessee.edu:utk_gradthes-11319 2024-01-07T09:46:56+01:00 Adaptive Strategies in Plant Physiology: Analyzing Duckweed (Lemna minor) Plasticity and Enhancing Potato Stress Resilience Sichterman, Megan J 2023-12-01T08:00:00Z application/pdf https://trace.tennessee.edu/utk_gradthes/10123 https://trace.tennessee.edu/context/utk_gradthes/article/11319/viewcontent/Megan_Sichterman_Thesis11.22.pdf unknown TRACE: Tennessee Research and Creative Exchange https://trace.tennessee.edu/utk_gradthes/10123 https://trace.tennessee.edu/context/utk_gradthes/article/11319/viewcontent/Megan_Sichterman_Thesis11.22.pdf Masters Theses abiotic stress biotechnology CRISPR transcriptomics duckweed lemna minor Bioinformatics Cell Biology Food Biotechnology Molecular Genetics Plant Biology Plant Breeding and Genetics text 2023 ftunivtennknox 2023-12-14T19:02:03Z This thesis delves into the impact of stress on plants amid climate change, exploring strategies for mitigation. The initial focus is on duckweed stress tolerance, evaluating how different ecotypes respond to various stressors over three weeks. The L. minor ecotype from the subarctic climate, Norway, displayed the highest levels of tolerance and plasticity by having significantly larger growth areas compared to all other ecotypes across treatment groups after three weeks. Many samples underwent increases in growth after three weeks of stress exposure compared to just one week of stress exposure. Transcriptomic analysis showed that salt exposure caused repression of genes related to photosynthesis and plastid localization and organization in the first week, along with induction of stress response genes. The processes that were repressed in the first week were induced by the third week, causing growth areas to increase significantly. Copper sulfate exposure induced genes related to ion and metal transportation, as well as homeostasis, which contributed to the significant increase in growth seen in week three in these samples. This study offers that the 7-day ecotoxicity study that is currently used for Lemna minor may not cover the entire stress response. Additionally, as duckweed is used worldwide for many applications such as feed production or phytoremediation, the ecotype utilized may determine the success of the system. Potato plants are also utilized globally, making stress mitigation strategies crucial as climates change. The following chapter discusses the increase of potato stress tolerance by means of Escherichia coli OtsB [trehaolose-6-phosphate phosphatase] gene insertion under the control of native flowering and tuberization promoters. The transgenic potato plants showed increased resilience to heat, photoperiod changes, herbivory, and competition as compared to the control wild type. The addition of excess trehalose to potato plants improved phenotypic stability in unfavorable environments and showed ... Text Subarctic University of Tennessee, Knoxville: Trace Norway
institution Open Polar
collection University of Tennessee, Knoxville: Trace
op_collection_id ftunivtennknox
language unknown
topic abiotic stress
biotechnology
CRISPR
transcriptomics
duckweed
lemna minor
Bioinformatics
Cell Biology
Food Biotechnology
Molecular Genetics
Plant Biology
Plant Breeding and Genetics
spellingShingle abiotic stress
biotechnology
CRISPR
transcriptomics
duckweed
lemna minor
Bioinformatics
Cell Biology
Food Biotechnology
Molecular Genetics
Plant Biology
Plant Breeding and Genetics
Sichterman, Megan J
Adaptive Strategies in Plant Physiology: Analyzing Duckweed (Lemna minor) Plasticity and Enhancing Potato Stress Resilience
topic_facet abiotic stress
biotechnology
CRISPR
transcriptomics
duckweed
lemna minor
Bioinformatics
Cell Biology
Food Biotechnology
Molecular Genetics
Plant Biology
Plant Breeding and Genetics
description This thesis delves into the impact of stress on plants amid climate change, exploring strategies for mitigation. The initial focus is on duckweed stress tolerance, evaluating how different ecotypes respond to various stressors over three weeks. The L. minor ecotype from the subarctic climate, Norway, displayed the highest levels of tolerance and plasticity by having significantly larger growth areas compared to all other ecotypes across treatment groups after three weeks. Many samples underwent increases in growth after three weeks of stress exposure compared to just one week of stress exposure. Transcriptomic analysis showed that salt exposure caused repression of genes related to photosynthesis and plastid localization and organization in the first week, along with induction of stress response genes. The processes that were repressed in the first week were induced by the third week, causing growth areas to increase significantly. Copper sulfate exposure induced genes related to ion and metal transportation, as well as homeostasis, which contributed to the significant increase in growth seen in week three in these samples. This study offers that the 7-day ecotoxicity study that is currently used for Lemna minor may not cover the entire stress response. Additionally, as duckweed is used worldwide for many applications such as feed production or phytoremediation, the ecotype utilized may determine the success of the system. Potato plants are also utilized globally, making stress mitigation strategies crucial as climates change. The following chapter discusses the increase of potato stress tolerance by means of Escherichia coli OtsB [trehaolose-6-phosphate phosphatase] gene insertion under the control of native flowering and tuberization promoters. The transgenic potato plants showed increased resilience to heat, photoperiod changes, herbivory, and competition as compared to the control wild type. The addition of excess trehalose to potato plants improved phenotypic stability in unfavorable environments and showed ...
format Text
author Sichterman, Megan J
author_facet Sichterman, Megan J
author_sort Sichterman, Megan J
title Adaptive Strategies in Plant Physiology: Analyzing Duckweed (Lemna minor) Plasticity and Enhancing Potato Stress Resilience
title_short Adaptive Strategies in Plant Physiology: Analyzing Duckweed (Lemna minor) Plasticity and Enhancing Potato Stress Resilience
title_full Adaptive Strategies in Plant Physiology: Analyzing Duckweed (Lemna minor) Plasticity and Enhancing Potato Stress Resilience
title_fullStr Adaptive Strategies in Plant Physiology: Analyzing Duckweed (Lemna minor) Plasticity and Enhancing Potato Stress Resilience
title_full_unstemmed Adaptive Strategies in Plant Physiology: Analyzing Duckweed (Lemna minor) Plasticity and Enhancing Potato Stress Resilience
title_sort adaptive strategies in plant physiology: analyzing duckweed (lemna minor) plasticity and enhancing potato stress resilience
publisher TRACE: Tennessee Research and Creative Exchange
publishDate 2023
url https://trace.tennessee.edu/utk_gradthes/10123
https://trace.tennessee.edu/context/utk_gradthes/article/11319/viewcontent/Megan_Sichterman_Thesis11.22.pdf
geographic Norway
geographic_facet Norway
genre Subarctic
genre_facet Subarctic
op_source Masters Theses
op_relation https://trace.tennessee.edu/utk_gradthes/10123
https://trace.tennessee.edu/context/utk_gradthes/article/11319/viewcontent/Megan_Sichterman_Thesis11.22.pdf
_version_ 1787428851604783104