Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica
Green sulfur bacteria (GSB) (Chlorobiaceae) are primary producers that are important in global carbon and sulfur cycling in natural environments. An almost complete genome sequence for a single, dominant GSB species (C-Ace) was assembled from shotgun sequence data of an environmental sample taken fr...
Published in: | The ISME Journal |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Nature Publishing Group
2010
|
Subjects: | |
Online Access: | http://www.nature.com/ismej/journal/v4/n8/full/ismej201028a.html https://doi.org/10.1038/ismej.2010.28 http://www.ncbi.nlm.nih.gov/pubmed/20237513 http://ecite.utas.edu.au/66533 |
id |
ftunivtasecite:oai:ecite.utas.edu.au:66533 |
---|---|
record_format |
openpolar |
spelling |
ftunivtasecite:oai:ecite.utas.edu.au:66533 2023-05-15T13:35:38+02:00 Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica Ng, C DeMaere, MZ Williams, TJ Lauro, FM Raftery, M Gibson, JAE Andrews-Pfannkoch, C Lewis, M Hoffman, JM Thomas, T Cavicchioli, R 2010 application/pdf http://www.nature.com/ismej/journal/v4/n8/full/ismej201028a.html https://doi.org/10.1038/ismej.2010.28 http://www.ncbi.nlm.nih.gov/pubmed/20237513 http://ecite.utas.edu.au/66533 en eng Nature Publishing Group http://ecite.utas.edu.au/66533/1/Ng et al 2010.J Gibson.pdf http://dx.doi.org/10.1038/ismej.2010.28 Ng, C and DeMaere, MZ and Williams, TJ and Lauro, FM and Raftery, M and Gibson, JAE and Andrews-Pfannkoch, C and Lewis, M and Hoffman, JM and Thomas, T and Cavicchioli, R, Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica, ISME Journal, 4, (8) pp. 1002-1019. ISSN 1751-7362 (2010) [Refereed Article] http://www.ncbi.nlm.nih.gov/pubmed/20237513 http://ecite.utas.edu.au/66533 Biological Sciences Microbiology Microbial Ecology Refereed Article PeerReviewed 2010 ftunivtasecite https://doi.org/10.1038/ismej.2010.28 2019-12-13T21:35:26Z Green sulfur bacteria (GSB) (Chlorobiaceae) are primary producers that are important in global carbon and sulfur cycling in natural environments. An almost complete genome sequence for a single, dominant GSB species (C-Ace) was assembled from shotgun sequence data of an environmental sample taken from the O2H2S interface of the water column of Ace Lake, Antarctica.Approximately 34Mb of DNA sequence data were assembled into nine scaffolds totaling 1.79 Mb, representing approximately 19-fold coverage for the C-Ace composite genome. A high level (B31%)of metaproteomic coverage was achieved using matched biomass. The metaproteogenomic approach provided unique insight into the protein complement required for dominating the microbial community under cold, nutrient-limited, oxygen-limited and extremely varied annual lightconditions. C-Ace shows physiological traits that promote its ability to compete very effectively with other GSB and gain dominance (for example, specific bacteriochlorophylls, mechanisms of cold adaptation) as well as a syntrophic relationship with sulfate-reducing bacteria that provides amechanism for the exchange of sulfur compounds. As a result we are able to propose an explanation of the active biological processes promoted by cold-adapted GSB and the adaptive strategies they use to thrive under the severe physiochemical conditions prevailing in polar environments. Article in Journal/Newspaper Antarc* Antarctica eCite UTAS (University of Tasmania) Ace Lake ENVELOPE(78.188,78.188,-68.472,-68.472) The ISME Journal 4 8 1002 1019 |
institution |
Open Polar |
collection |
eCite UTAS (University of Tasmania) |
op_collection_id |
ftunivtasecite |
language |
English |
topic |
Biological Sciences Microbiology Microbial Ecology |
spellingShingle |
Biological Sciences Microbiology Microbial Ecology Ng, C DeMaere, MZ Williams, TJ Lauro, FM Raftery, M Gibson, JAE Andrews-Pfannkoch, C Lewis, M Hoffman, JM Thomas, T Cavicchioli, R Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica |
topic_facet |
Biological Sciences Microbiology Microbial Ecology |
description |
Green sulfur bacteria (GSB) (Chlorobiaceae) are primary producers that are important in global carbon and sulfur cycling in natural environments. An almost complete genome sequence for a single, dominant GSB species (C-Ace) was assembled from shotgun sequence data of an environmental sample taken from the O2H2S interface of the water column of Ace Lake, Antarctica.Approximately 34Mb of DNA sequence data were assembled into nine scaffolds totaling 1.79 Mb, representing approximately 19-fold coverage for the C-Ace composite genome. A high level (B31%)of metaproteomic coverage was achieved using matched biomass. The metaproteogenomic approach provided unique insight into the protein complement required for dominating the microbial community under cold, nutrient-limited, oxygen-limited and extremely varied annual lightconditions. C-Ace shows physiological traits that promote its ability to compete very effectively with other GSB and gain dominance (for example, specific bacteriochlorophylls, mechanisms of cold adaptation) as well as a syntrophic relationship with sulfate-reducing bacteria that provides amechanism for the exchange of sulfur compounds. As a result we are able to propose an explanation of the active biological processes promoted by cold-adapted GSB and the adaptive strategies they use to thrive under the severe physiochemical conditions prevailing in polar environments. |
format |
Article in Journal/Newspaper |
author |
Ng, C DeMaere, MZ Williams, TJ Lauro, FM Raftery, M Gibson, JAE Andrews-Pfannkoch, C Lewis, M Hoffman, JM Thomas, T Cavicchioli, R |
author_facet |
Ng, C DeMaere, MZ Williams, TJ Lauro, FM Raftery, M Gibson, JAE Andrews-Pfannkoch, C Lewis, M Hoffman, JM Thomas, T Cavicchioli, R |
author_sort |
Ng, C |
title |
Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica |
title_short |
Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica |
title_full |
Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica |
title_fullStr |
Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica |
title_full_unstemmed |
Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica |
title_sort |
metaproteogenomic analysis of a dominant green sulfur bacterium from ace lake, antarctica |
publisher |
Nature Publishing Group |
publishDate |
2010 |
url |
http://www.nature.com/ismej/journal/v4/n8/full/ismej201028a.html https://doi.org/10.1038/ismej.2010.28 http://www.ncbi.nlm.nih.gov/pubmed/20237513 http://ecite.utas.edu.au/66533 |
long_lat |
ENVELOPE(78.188,78.188,-68.472,-68.472) |
geographic |
Ace Lake |
geographic_facet |
Ace Lake |
genre |
Antarc* Antarctica |
genre_facet |
Antarc* Antarctica |
op_relation |
http://ecite.utas.edu.au/66533/1/Ng et al 2010.J Gibson.pdf http://dx.doi.org/10.1038/ismej.2010.28 Ng, C and DeMaere, MZ and Williams, TJ and Lauro, FM and Raftery, M and Gibson, JAE and Andrews-Pfannkoch, C and Lewis, M and Hoffman, JM and Thomas, T and Cavicchioli, R, Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica, ISME Journal, 4, (8) pp. 1002-1019. ISSN 1751-7362 (2010) [Refereed Article] http://www.ncbi.nlm.nih.gov/pubmed/20237513 http://ecite.utas.edu.au/66533 |
op_doi |
https://doi.org/10.1038/ismej.2010.28 |
container_title |
The ISME Journal |
container_volume |
4 |
container_issue |
8 |
container_start_page |
1002 |
op_container_end_page |
1019 |
_version_ |
1766068327838384128 |