A validated approach for supervised dive classification in diving vertebrates

Supervised dive classification is a commonly used technique for categorising time-depth profiles of diving vertebrates. Such analyses permit the description and quantification of dive behaviour and foraging tactics, and highlight feeding locations. Ideally, classification functions should be validat...

Full description

Bibliographic Details
Published in:Journal of Experimental Marine Biology and Ecology
Main Authors: Thums, M, Bradshaw, CJA, Hindell, MA
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2008
Subjects:
Online Access:https://doi.org/10.1016/j.jembe.2008.06.024
http://ecite.utas.edu.au/55930
id ftunivtasecite:oai:ecite.utas.edu.au:55930
record_format openpolar
spelling ftunivtasecite:oai:ecite.utas.edu.au:55930 2023-05-15T16:05:23+02:00 A validated approach for supervised dive classification in diving vertebrates Thums, M Bradshaw, CJA Hindell, MA 2008 https://doi.org/10.1016/j.jembe.2008.06.024 http://ecite.utas.edu.au/55930 en eng Elsevier BV http://dx.doi.org/10.1016/j.jembe.2008.06.024 Thums, M and Bradshaw, CJA and Hindell, MA, A validated approach for supervised dive classification in diving vertebrates, Journal of Experimental Marine Biology and Ecology, 363, (1-2) pp. 75-83. ISSN 0022-0981 (2008) [Refereed Article] http://ecite.utas.edu.au/55930 Environmental Sciences Environmental Science and Management Wildlife and Habitat Management Refereed Article PeerReviewed 2008 ftunivtasecite https://doi.org/10.1016/j.jembe.2008.06.024 2019-12-13T21:28:28Z Supervised dive classification is a commonly used technique for categorising time-depth profiles of diving vertebrates. Such analyses permit the description and quantification of dive behaviour and foraging tactics, and highlight feeding locations. Ideally, classification functions should be validated, and this is commonly done visually. Visual classification is subjective, but it is currently one of the few measures available for validation. We develop several approaches to validate a supervised dive classification: (1) two people visually assigning dives and developing a dataset where both agree, and (2) use of dives from southern elephant seals identified as "drift dives" with characteristic velocity signatures. We classified the dives of three seals from their post-moult foraging trips and estimated the error associated with visual classification. We found classification error (disagreement) between classifiers up to 57%. We created a training dataset based on dives with agreement and applied this to a relatively new, automated classification method - the random forests (RF) algorithm. A supervised function developed using this algorithm estimated a classification error of 5% on elephant seal dives; classification error on underrepresented dive classes ranged from 2 - 12%. Testing this classification function on independent data produced a low error (1.6%). RF function errors were lower than for visual classification, and errors were similar to or better than those estimated using discriminant functions. Swim velocity parameters were the most important predictors, but their absence did not reduce the random forests function's effectiveness by much. Our results suggest that there is a temporal shift in diving behaviour as seals become more buoyant. We compared the temporal patterns in drift rate from the drift dives classified using the RF function with the drift dives validated via characteristic velocity signatures. This indicated that the classifications produced by RF function are valid even though some error persists, and we suggest adoption of this method for classifying dives in other air-breathing diving vertebrates. 2008 Elsevier B.V. All rights reserved. Article in Journal/Newspaper Elephant Seal Elephant Seals Southern Elephant Seals eCite UTAS (University of Tasmania) Journal of Experimental Marine Biology and Ecology 363 1-2 75 83
institution Open Polar
collection eCite UTAS (University of Tasmania)
op_collection_id ftunivtasecite
language English
topic Environmental Sciences
Environmental Science and Management
Wildlife and Habitat Management
spellingShingle Environmental Sciences
Environmental Science and Management
Wildlife and Habitat Management
Thums, M
Bradshaw, CJA
Hindell, MA
A validated approach for supervised dive classification in diving vertebrates
topic_facet Environmental Sciences
Environmental Science and Management
Wildlife and Habitat Management
description Supervised dive classification is a commonly used technique for categorising time-depth profiles of diving vertebrates. Such analyses permit the description and quantification of dive behaviour and foraging tactics, and highlight feeding locations. Ideally, classification functions should be validated, and this is commonly done visually. Visual classification is subjective, but it is currently one of the few measures available for validation. We develop several approaches to validate a supervised dive classification: (1) two people visually assigning dives and developing a dataset where both agree, and (2) use of dives from southern elephant seals identified as "drift dives" with characteristic velocity signatures. We classified the dives of three seals from their post-moult foraging trips and estimated the error associated with visual classification. We found classification error (disagreement) between classifiers up to 57%. We created a training dataset based on dives with agreement and applied this to a relatively new, automated classification method - the random forests (RF) algorithm. A supervised function developed using this algorithm estimated a classification error of 5% on elephant seal dives; classification error on underrepresented dive classes ranged from 2 - 12%. Testing this classification function on independent data produced a low error (1.6%). RF function errors were lower than for visual classification, and errors were similar to or better than those estimated using discriminant functions. Swim velocity parameters were the most important predictors, but their absence did not reduce the random forests function's effectiveness by much. Our results suggest that there is a temporal shift in diving behaviour as seals become more buoyant. We compared the temporal patterns in drift rate from the drift dives classified using the RF function with the drift dives validated via characteristic velocity signatures. This indicated that the classifications produced by RF function are valid even though some error persists, and we suggest adoption of this method for classifying dives in other air-breathing diving vertebrates. 2008 Elsevier B.V. All rights reserved.
format Article in Journal/Newspaper
author Thums, M
Bradshaw, CJA
Hindell, MA
author_facet Thums, M
Bradshaw, CJA
Hindell, MA
author_sort Thums, M
title A validated approach for supervised dive classification in diving vertebrates
title_short A validated approach for supervised dive classification in diving vertebrates
title_full A validated approach for supervised dive classification in diving vertebrates
title_fullStr A validated approach for supervised dive classification in diving vertebrates
title_full_unstemmed A validated approach for supervised dive classification in diving vertebrates
title_sort validated approach for supervised dive classification in diving vertebrates
publisher Elsevier BV
publishDate 2008
url https://doi.org/10.1016/j.jembe.2008.06.024
http://ecite.utas.edu.au/55930
genre Elephant Seal
Elephant Seals
Southern Elephant Seals
genre_facet Elephant Seal
Elephant Seals
Southern Elephant Seals
op_relation http://dx.doi.org/10.1016/j.jembe.2008.06.024
Thums, M and Bradshaw, CJA and Hindell, MA, A validated approach for supervised dive classification in diving vertebrates, Journal of Experimental Marine Biology and Ecology, 363, (1-2) pp. 75-83. ISSN 0022-0981 (2008) [Refereed Article]
http://ecite.utas.edu.au/55930
op_doi https://doi.org/10.1016/j.jembe.2008.06.024
container_title Journal of Experimental Marine Biology and Ecology
container_volume 363
container_issue 1-2
container_start_page 75
op_container_end_page 83
_version_ 1766401283900571648