An empirical anisotropic flow relation for ice-sheet modeling: development and implementation

The largest source of uncertainty in predictions of future sea levels is the contribution arising from the discharge of grounded ice from the polar ice sheets. A key factor in reducing this uncertainty is to improve the numerical models used to predict ice-sheet evolution. One important development...

Full description

Bibliographic Details
Main Authors: Treverrow, A, Warner, RC, Graham, F, Greve, R, Morlighem, M
Format: Conference Object
Language:English
Published: . 2017
Subjects:
Online Access:https://www.igsoc.org/symposia/2017/newzealand/proceedings/fullprogramme.html
http://ecite.utas.edu.au/125955
id ftunivtasecite:oai:ecite.utas.edu.au:125955
record_format openpolar
spelling ftunivtasecite:oai:ecite.utas.edu.au:125955 2023-05-15T16:40:07+02:00 An empirical anisotropic flow relation for ice-sheet modeling: development and implementation Treverrow, A Warner, RC Graham, F Greve, R Morlighem, M 2017 application/pdf https://www.igsoc.org/symposia/2017/newzealand/proceedings/fullprogramme.html http://ecite.utas.edu.au/125955 en eng . http://ecite.utas.edu.au/125955/1/2017_Treverrow_IGS_Wellington_presentation_program.pdf Treverrow, A and Warner, RC and Graham, F and Greve, R and Morlighem, M, An empirical anisotropic flow relation for ice-sheet modeling: development and implementation, Proceedings of the Wellington Symposium: Cryosphere in a Changing Climate, 12-17 February, Wellington, New Zealand, pp. 75A2359. (2017) [Conference Extract] http://ecite.utas.edu.au/125955 Earth Sciences Physical Geography and Environmental Geoscience Glaciology Conference Extract NonPeerReviewed 2017 ftunivtasecite 2019-12-13T22:24:25Z The largest source of uncertainty in predictions of future sea levels is the contribution arising from the discharge of grounded ice from the polar ice sheets. A key factor in reducing this uncertainty is to improve the numerical models used to predict ice-sheet evolution. One important development is improving the description of the ice-flow physics used in ice-sheet models. Primary considerations in the specification of a realistic flow relation for ice are that it includes the effect of the anisotropy of polycrystalline ice on deformation in a realistic manner without dramatically degrading the computational efficiency of the model. We describe the key features of an empirical flow relation for ice that is based on tertiary creep rates from experiments conducted in simple shear, confined compression and a combination of these. We refer to this flow relation as ESTAR (empirical scalar tertiary anisotropic rheology). In ESTAR the anisotropic flow enhancement, which is typical of polycrystalline ice during steady tertiary creep, is described by a simple function of the stress configuration that reflects the presence of simple shear. ESTAR also maintains a collinear relationship between components of the strain rate and deviatoric stress tensors; aiding its incorporation into existing ice-sheet models. ESTAR has been implemented in the model ISSM (Ice Sheet System Model) and, in a simplified form termed ESTAR-MFL (MFL: minimal flow law), in the model SICOPOLIS (SImulation COde for POlythermal Ice Sheets). We present a preliminary assessment of the flow relation based on a series of idealized simulations, including tests developed previously for the intercomparison of ice-sheet models. In each case the ESTAR results are compared to corresponding simulations in which the prevailing isotropic rheology prescribed by the Glen flow relation is used. We demonstrate that ESTAR provides a noticeably different description of ice dynamics, particularly in situations where the flow regime is characterized by spatial variations or greater complexity in the proportions of shear and normal stresses. Conference Object Ice Sheet eCite UTAS (University of Tasmania)
institution Open Polar
collection eCite UTAS (University of Tasmania)
op_collection_id ftunivtasecite
language English
topic Earth Sciences
Physical Geography and Environmental Geoscience
Glaciology
spellingShingle Earth Sciences
Physical Geography and Environmental Geoscience
Glaciology
Treverrow, A
Warner, RC
Graham, F
Greve, R
Morlighem, M
An empirical anisotropic flow relation for ice-sheet modeling: development and implementation
topic_facet Earth Sciences
Physical Geography and Environmental Geoscience
Glaciology
description The largest source of uncertainty in predictions of future sea levels is the contribution arising from the discharge of grounded ice from the polar ice sheets. A key factor in reducing this uncertainty is to improve the numerical models used to predict ice-sheet evolution. One important development is improving the description of the ice-flow physics used in ice-sheet models. Primary considerations in the specification of a realistic flow relation for ice are that it includes the effect of the anisotropy of polycrystalline ice on deformation in a realistic manner without dramatically degrading the computational efficiency of the model. We describe the key features of an empirical flow relation for ice that is based on tertiary creep rates from experiments conducted in simple shear, confined compression and a combination of these. We refer to this flow relation as ESTAR (empirical scalar tertiary anisotropic rheology). In ESTAR the anisotropic flow enhancement, which is typical of polycrystalline ice during steady tertiary creep, is described by a simple function of the stress configuration that reflects the presence of simple shear. ESTAR also maintains a collinear relationship between components of the strain rate and deviatoric stress tensors; aiding its incorporation into existing ice-sheet models. ESTAR has been implemented in the model ISSM (Ice Sheet System Model) and, in a simplified form termed ESTAR-MFL (MFL: minimal flow law), in the model SICOPOLIS (SImulation COde for POlythermal Ice Sheets). We present a preliminary assessment of the flow relation based on a series of idealized simulations, including tests developed previously for the intercomparison of ice-sheet models. In each case the ESTAR results are compared to corresponding simulations in which the prevailing isotropic rheology prescribed by the Glen flow relation is used. We demonstrate that ESTAR provides a noticeably different description of ice dynamics, particularly in situations where the flow regime is characterized by spatial variations or greater complexity in the proportions of shear and normal stresses.
format Conference Object
author Treverrow, A
Warner, RC
Graham, F
Greve, R
Morlighem, M
author_facet Treverrow, A
Warner, RC
Graham, F
Greve, R
Morlighem, M
author_sort Treverrow, A
title An empirical anisotropic flow relation for ice-sheet modeling: development and implementation
title_short An empirical anisotropic flow relation for ice-sheet modeling: development and implementation
title_full An empirical anisotropic flow relation for ice-sheet modeling: development and implementation
title_fullStr An empirical anisotropic flow relation for ice-sheet modeling: development and implementation
title_full_unstemmed An empirical anisotropic flow relation for ice-sheet modeling: development and implementation
title_sort empirical anisotropic flow relation for ice-sheet modeling: development and implementation
publisher .
publishDate 2017
url https://www.igsoc.org/symposia/2017/newzealand/proceedings/fullprogramme.html
http://ecite.utas.edu.au/125955
genre Ice Sheet
genre_facet Ice Sheet
op_relation http://ecite.utas.edu.au/125955/1/2017_Treverrow_IGS_Wellington_presentation_program.pdf
Treverrow, A and Warner, RC and Graham, F and Greve, R and Morlighem, M, An empirical anisotropic flow relation for ice-sheet modeling: development and implementation, Proceedings of the Wellington Symposium: Cryosphere in a Changing Climate, 12-17 February, Wellington, New Zealand, pp. 75A2359. (2017) [Conference Extract]
http://ecite.utas.edu.au/125955
_version_ 1766030498115616768