From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots
Ocean warming hotspots are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts...
Published in: | Global Change Biology |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Blackwell Publishing Ltd
2016
|
Subjects: | |
Online Access: | https://doi.org/10.1111/gcb.13247 http://www.ncbi.nlm.nih.gov/pubmed/26855008 http://ecite.utas.edu.au/108501 |
id |
ftunivtasecite:oai:ecite.utas.edu.au:108501 |
---|---|
record_format |
openpolar |
spelling |
ftunivtasecite:oai:ecite.utas.edu.au:108501 2023-05-15T17:52:03+02:00 From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots Popova, E Yool, A Byfield, V Cochrane, K Coward, AC Salim, SS Gasalla, MA Henson, SA Hobday, AJ Pecl, GT Sauer, WH Roberts, MJ 2016 application/pdf https://doi.org/10.1111/gcb.13247 http://www.ncbi.nlm.nih.gov/pubmed/26855008 http://ecite.utas.edu.au/108501 en eng Blackwell Publishing Ltd http://ecite.utas.edu.au/108501/2/Popova_et_al-2016-Global_Change_Biology (1).pdf http://dx.doi.org/10.1111/gcb.13247 Popova, E and Yool, A and Byfield, V and Cochrane, K and Coward, AC and Salim, SS and Gasalla, MA and Henson, SA and Hobday, AJ and Pecl, GT and Sauer, WH and Roberts, MJ, From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots, Global Change Biology, 22, (6) pp. 2038-2053. ISSN 1354-1013 (2016) [Refereed Article] http://www.ncbi.nlm.nih.gov/pubmed/26855008 http://ecite.utas.edu.au/108501 Agricultural and Veterinary Sciences Fisheries Sciences Fisheries Sciences not elsewhere classified Refereed Article PeerReviewed 2016 ftunivtasecite https://doi.org/10.1111/gcb.13247 2019-12-13T22:09:23Z Ocean warming hotspots are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO 2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas. Article in Journal/Newspaper Ocean acidification eCite UTAS (University of Tasmania) Global Change Biology 22 6 2038 2053 |
institution |
Open Polar |
collection |
eCite UTAS (University of Tasmania) |
op_collection_id |
ftunivtasecite |
language |
English |
topic |
Agricultural and Veterinary Sciences Fisheries Sciences Fisheries Sciences not elsewhere classified |
spellingShingle |
Agricultural and Veterinary Sciences Fisheries Sciences Fisheries Sciences not elsewhere classified Popova, E Yool, A Byfield, V Cochrane, K Coward, AC Salim, SS Gasalla, MA Henson, SA Hobday, AJ Pecl, GT Sauer, WH Roberts, MJ From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots |
topic_facet |
Agricultural and Veterinary Sciences Fisheries Sciences Fisheries Sciences not elsewhere classified |
description |
Ocean warming hotspots are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO 2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas. |
format |
Article in Journal/Newspaper |
author |
Popova, E Yool, A Byfield, V Cochrane, K Coward, AC Salim, SS Gasalla, MA Henson, SA Hobday, AJ Pecl, GT Sauer, WH Roberts, MJ |
author_facet |
Popova, E Yool, A Byfield, V Cochrane, K Coward, AC Salim, SS Gasalla, MA Henson, SA Hobday, AJ Pecl, GT Sauer, WH Roberts, MJ |
author_sort |
Popova, E |
title |
From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots |
title_short |
From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots |
title_full |
From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots |
title_fullStr |
From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots |
title_full_unstemmed |
From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots |
title_sort |
from global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots |
publisher |
Blackwell Publishing Ltd |
publishDate |
2016 |
url |
https://doi.org/10.1111/gcb.13247 http://www.ncbi.nlm.nih.gov/pubmed/26855008 http://ecite.utas.edu.au/108501 |
genre |
Ocean acidification |
genre_facet |
Ocean acidification |
op_relation |
http://ecite.utas.edu.au/108501/2/Popova_et_al-2016-Global_Change_Biology (1).pdf http://dx.doi.org/10.1111/gcb.13247 Popova, E and Yool, A and Byfield, V and Cochrane, K and Coward, AC and Salim, SS and Gasalla, MA and Henson, SA and Hobday, AJ and Pecl, GT and Sauer, WH and Roberts, MJ, From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots, Global Change Biology, 22, (6) pp. 2038-2053. ISSN 1354-1013 (2016) [Refereed Article] http://www.ncbi.nlm.nih.gov/pubmed/26855008 http://ecite.utas.edu.au/108501 |
op_doi |
https://doi.org/10.1111/gcb.13247 |
container_title |
Global Change Biology |
container_volume |
22 |
container_issue |
6 |
container_start_page |
2038 |
op_container_end_page |
2053 |
_version_ |
1766159376332095488 |