Koneoppimismallit reservimarkkinoille osallistuvan lämpövaraston ohjauksessa : Reservimarkkinahintojen ennustaminen

Sääriippuvaisen uusiutuvan energian lisääntyessä sähköjärjestelmän tasapainon ylläpitäminen on entistä haasteellisempaa. Tasapainon ylläpitämiseksi erilaiset nopeasti reagoivat, sähköntuotantoon tai -kulutukseen kykenevät resurssit voivat tarjota joustoa, eli reserviä, jota kantaverkko-operaattorit...

Full description

Bibliographic Details
Main Author: Kumpulainen, Ville
Other Authors: Tekniikan ja luonnontieteiden tiedekunta - Faculty of Engineering and Natural Sciences, Tampere University
Format: Bachelor Thesis
Language:Finnish
Published: 2023
Subjects:
Online Access:https://trepo.tuni.fi/handle/10024/151101
Description
Summary:Sääriippuvaisen uusiutuvan energian lisääntyessä sähköjärjestelmän tasapainon ylläpitäminen on entistä haasteellisempaa. Tasapainon ylläpitämiseksi erilaiset nopeasti reagoivat, sähköntuotantoon tai -kulutukseen kykenevät resurssit voivat tarjota joustoa, eli reserviä, jota kantaverkko-operaattorit hankkivat itselleen reservimarkkinoilta. Sähkölämmitteiset lämpövarastot ovat merkittäviä sähkönkuluttajia, ja voivat näin ollen tarjota merkittävän määrän reserviä samalla ansaiten parempia tuottoja. Reservimarkkinahintojen riittävän tarkka ja luotettava ennustaminen on edellytyksenä reservimarkkinoille osallistuvan lämpövaraston kustannustehokkaalle ohjaukselle. Tässä työssä selvitetään millaisia koneoppimismalleja voitaisiin hyödyntää reservimarkkinahintojen ennustamisessa. Lisäksi tutkitaan millaisia yleisiä suunnitteluvaiheita reservimarkkinahintojen ennustamiseen käytettäville koneoppimismalleille on. Työn tarkoituksena on toimia aloituspisteenä reservimarkkinahintoja ennustavan koneoppimismallin suunnittelulle. Jopa puolet maailman energiankulutuksesta kulutetaan lämpönä. Lämpövarastot voivat olla merkittävässä roolissa vihreässä siirtymässä mahdollistaen kulutuspiikkien tasaamisen sekä lämmityksen sähköistymisen. Polar Night Energyn ensimmäisessä laatuaan olevassa hiekka-lämpövarastossa lämpö voidaan varastoida korkeaan, jopa 600 °C lämpötilaan, joka mahdollistaa lämmön toimittamisen esimerkiksi kaukolämmön ja useimpien teollisuuden prosessien tarpeisiin. Lämpövaraston toimintaa ohjaavat pääasiassa asiakkaan lämmöntarve, sähkön spot-hinta sekä varaston varaustaso. Lämpövarastoa pyritään ohjaamaan niin, että varastoa ladataan sähkön hinnan ollessa matalalla ja puretaan asiakkaan tarpeiden mukaisesti. Reservimarkkinoille osallistuvan lämpövaraston kohdalla myös reservimarkkinahinnat ovat merkittävä osatekijä ohjauksessa, sillä niiden ennustaminen mahdollistaa kaikista tuottoisimpien tuntien sekä markkinoiden valinnan. Sähkö- ja reservimarkkinahintojen ennustuksessa käytetyimpiä ennustusmenetelmiä ovat ...