Draft genome sequence data of a psychrophilic tundra soil methanotroph, Methylobacter psychrophilus Z-0021 (DSM 9914)

Psychrophilic methanotrophic bacteria are abundant and play an important role in methane removal in cold methanogenic environments, such as boreal and arctic terrestrial and aquatic ecosystems. They could be also applied in the bioconversion of biogas and natural gas into value-added products (e.g.,...

Full description

Bibliographic Details
Published in:Data in Brief
Main Authors: Rissanen, Antti Juhani, Mangayil, Rahul, Svenning, Mette Marianne, Khanongnuch, Ramita
Other Authors: Tampere University, Materials Science and Environmental Engineering
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:https://trepo.tuni.fi/handle/10024/143848
https://doi.org/10.1016/j.dib.2022.108689
Description
Summary:Psychrophilic methanotrophic bacteria are abundant and play an important role in methane removal in cold methanogenic environments, such as boreal and arctic terrestrial and aquatic ecosystems. They could be also applied in the bioconversion of biogas and natural gas into value-added products (e.g., chemicals and single-cell protein) in cold regions. Hence, isolation and genome sequencing of psychrophilic methanotrophic bacteria are needed to provide important data on their functional capabilities. However, psychrophilic methanotroph isolates and consequently their genome sequences are rare. Fortunately, Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures GmbH was able to revive the long-extinct pure culture of a psychrophilic methanotrophic tundra soil isolate, Methylobacter psychrophilus Z-0021 (DSM 9914), from their stocks during 2022. Here, we describe the de novo assembled genome sequence of Methylobacter psychrophilus Z-0021 comprising a total of 4691082 bp in 156 contigs with a G+C content of 43.1% and 4074 coding sequences. The preliminary genome annotation analysis of Z-0021 identified genes encoding oxidation of methane, methanol and formaldehyde, assimilation of carbon and nitrate, and N2 fixation. In pairwise genome-to-genome comparisons with closely related methanotrophic strains, the strain Z-0021 had an average nucleotide identity (ANI) of 92.9% and 78.2% and a digital DNA-DNA hybridization (dDDH) value of 50.6% and 22% with a recently described psychrophilic, lake isolate, Methylobacter sp. S3L5C and a psychrotrophic, arctic wetland soil isolate, Methylobacter tundripaludum SV96, respectively. In addition, the respective similarities between genomes of the strains S3L5C and SV96 were 78.1% ANI and 21.8% dDDH. Comparison to widely used ANI and dDDH thresholds to delineate unique species ( Peer reviewed