Understanding maturity: insights into the mechanisms underpinning maturity in gadoids

Marked shifts in the life history traits of fish have been reported in many exploited fish stocks, with a particular trend towards decreasing size and age at maturity. Though other environmental and behavioural factors have been implicated, the key driver of these changes links to fishing pressure,...

Full description

Bibliographic Details
Main Author: Doyle, Alice
Other Authors: Davie, Andrew, Wright, Peter
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Stirling 2016
Subjects:
cod
BPG
Online Access:http://hdl.handle.net/1893/25265
http://dspace.stir.ac.uk/bitstream/1893/25265/1/AliceDoyle_Thesis_v2.pdf
Description
Summary:Marked shifts in the life history traits of fish have been reported in many exploited fish stocks, with a particular trend towards decreasing size and age at maturity. Though other environmental and behavioural factors have been implicated, the key driver of these changes links to fishing pressure, through both the direct selective effects of fishing itself, and indirectly through the manipulation of important biological and environmental factors. Although reproduction itself has been well described in teleosts, the mechanisms of environmental and endogenous entrainment of maturation remain unclear and it was the principal aim of this thesis to improve current understanding of these systems in gadoids. Photoperiod has been identified as the strongest environmental cue for entraining seasonal behaviours, including seasonal reproduction. Over the last decade, several of the key drivers involved in the photoneuroendocrine cascade have been elucidated in mammals and birds, with the Eya3 pathway merging as an important mechanism for entraining maturation. However, little is yet known of their influence on maturation in fish. In the first study, the photoperiodic regulation of the Eya3-Tshβ-Dio2 cascade was analysed in Atlantic cod exposed to either continuous light (reproductive inhibition) or simulated natural photoperiod (reproductive stimulation) from July to December. Monthly expression was measured through QPCR, demonstrating a strong activation of pituitary Eya3 under declining photoperiod. As this coincided with the onset of secondary gametogenesis, these results suggest that Eya3 may play a stimulatory role in the photoneuroendocrine cascade of Atlantic cod. Although photoperiod represents the most reliable and noise free proximate signal to entrain the reproductive process, it is clear that a minimum growth and energetic state must be reached for maturation to progress. This directed the second line of study – a series of diet restriction trials on haddock and cod designed to investigate the influence of ...