id ftunivsthongkong:oai:repository.hkust.edu.hk:1783.1-120288
record_format openpolar
spelling ftunivsthongkong:oai:repository.hkust.edu.hk:1783.1-120288 2023-05-15T14:27:46+02:00 Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming Hwang, Jiwon Choi, Yong-Sang Yoo, Changhyun Wang, Yuan Su, Hui Jiang, Jonathan H. 2019 https://repository.hkust.edu.hk/ir/Record/1783.1-120288 https://doi.org/10.1038/s41598-019-49218-6 http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=2045-2322&rft.volume=9&rft.issue=1&rft.date=2019&rft.spage=&rft.aulast=Hwang&rft.aufirst=&rft.atitle=Interpretation+of+the+Top-of-Atmosphere+Energy+Flux+for+Future+Arctic+Warming&rft.title=Scientific+Reports http://www.scopus.com/record/display.url?eid=2-s2.0-85072012310&origin=inward http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000484988100033 English eng Nature Publishing Group https://repository.hkust.edu.hk/ir/Record/1783.1-120288 Scientific Reports, v. 9, (1), September 2019, article number 13059 2045-2322 https://doi.org/10.1038/s41598-019-49218-6 http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=2045-2322&rft.volume=9&rft.issue=1&rft.date=2019&rft.spage=&rft.aulast=Hwang&rft.aufirst=&rft.atitle=Interpretation+of+the+Top-of-Atmosphere+Energy+Flux+for+Future+Arctic+Warming&rft.title=Scientific+Reports http://www.scopus.com/record/display.url?eid=2-s2.0-85072012310&origin=inward http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000484988100033 Article 2019 ftunivsthongkong https://doi.org/10.1038/s41598-019-49218-6 2022-09-30T00:07:53Z With the trend of amplified warming in the Arctic, we examine the observed and modeled top-of-atmosphere (TOA) radiative responses to surface air-temperature changes over the Arctic by using TOA energy fluxes from NASA’s CERES observations and those from twelve climate models in CMIP5. Considerable inter-model spreads in the radiative responses suggest that future Arctic warming may be determined by the compensation between the radiative imbalance and poleward energy transport (mainly via transient eddy activities). The poleward energy transport tends to prevent excessive Arctic warming: the transient eddy activities are weakened because of the reduced meridional temperature gradient under polar amplification. However, the models that predict rapid Arctic warming do not realistically simulate the compensation effect. This role of energy compensation in future Arctic warming is found only when the inter-model differences in cloud radiative effects are considered. Thus, the dynamical response can act as a buffer to prevent excessive Arctic warming against the radiative response of 0.11 W m−2 K−1 as measured from satellites, which helps the Arctic climate system retain an Arctic climate sensitivity of 4.61 K. Therefore, if quantitative analyses of the observations identify contribution of atmospheric dynamics and cloud effects to radiative imbalance, the satellite-measured radiative response will be a crucial indicator of future Arctic warming. © 2019, The Author(s). Article in Journal/Newspaper Arctic Arctic The Hong Kong University of Science and Technology: HKUST Institutional Repository Arctic Scientific Reports 9 1
institution Open Polar
collection The Hong Kong University of Science and Technology: HKUST Institutional Repository
op_collection_id ftunivsthongkong
language English
description With the trend of amplified warming in the Arctic, we examine the observed and modeled top-of-atmosphere (TOA) radiative responses to surface air-temperature changes over the Arctic by using TOA energy fluxes from NASA’s CERES observations and those from twelve climate models in CMIP5. Considerable inter-model spreads in the radiative responses suggest that future Arctic warming may be determined by the compensation between the radiative imbalance and poleward energy transport (mainly via transient eddy activities). The poleward energy transport tends to prevent excessive Arctic warming: the transient eddy activities are weakened because of the reduced meridional temperature gradient under polar amplification. However, the models that predict rapid Arctic warming do not realistically simulate the compensation effect. This role of energy compensation in future Arctic warming is found only when the inter-model differences in cloud radiative effects are considered. Thus, the dynamical response can act as a buffer to prevent excessive Arctic warming against the radiative response of 0.11 W m−2 K−1 as measured from satellites, which helps the Arctic climate system retain an Arctic climate sensitivity of 4.61 K. Therefore, if quantitative analyses of the observations identify contribution of atmospheric dynamics and cloud effects to radiative imbalance, the satellite-measured radiative response will be a crucial indicator of future Arctic warming. © 2019, The Author(s).
format Article in Journal/Newspaper
author Hwang, Jiwon
Choi, Yong-Sang
Yoo, Changhyun
Wang, Yuan
Su, Hui
Jiang, Jonathan H.
spellingShingle Hwang, Jiwon
Choi, Yong-Sang
Yoo, Changhyun
Wang, Yuan
Su, Hui
Jiang, Jonathan H.
Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming
author_facet Hwang, Jiwon
Choi, Yong-Sang
Yoo, Changhyun
Wang, Yuan
Su, Hui
Jiang, Jonathan H.
author_sort Hwang, Jiwon
title Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming
title_short Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming
title_full Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming
title_fullStr Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming
title_full_unstemmed Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming
title_sort interpretation of the top-of-atmosphere energy flux for future arctic warming
publisher Nature Publishing Group
publishDate 2019
url https://repository.hkust.edu.hk/ir/Record/1783.1-120288
https://doi.org/10.1038/s41598-019-49218-6
http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=2045-2322&rft.volume=9&rft.issue=1&rft.date=2019&rft.spage=&rft.aulast=Hwang&rft.aufirst=&rft.atitle=Interpretation+of+the+Top-of-Atmosphere+Energy+Flux+for+Future+Arctic+Warming&rft.title=Scientific+Reports
http://www.scopus.com/record/display.url?eid=2-s2.0-85072012310&origin=inward
http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000484988100033
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
genre_facet Arctic
Arctic
op_relation https://repository.hkust.edu.hk/ir/Record/1783.1-120288
Scientific Reports, v. 9, (1), September 2019, article number 13059
2045-2322
https://doi.org/10.1038/s41598-019-49218-6
http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=2045-2322&rft.volume=9&rft.issue=1&rft.date=2019&rft.spage=&rft.aulast=Hwang&rft.aufirst=&rft.atitle=Interpretation+of+the+Top-of-Atmosphere+Energy+Flux+for+Future+Arctic+Warming&rft.title=Scientific+Reports
http://www.scopus.com/record/display.url?eid=2-s2.0-85072012310&origin=inward
http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000484988100033
op_doi https://doi.org/10.1038/s41598-019-49218-6
container_title Scientific Reports
container_volume 9
container_issue 1
_version_ 1766301670409502720