Non-probabilistic fermionic limit shapes
23 pages, 8 figures We study a translational invariant free fermions model in imaginary time, with nearest neighbor and next-nearest neighbor hopping terms, for a class of inhomogeneous boundary conditions. This model is known to give rise to limit shapes and arctic curves, in the absence of the nex...
Published in: | Journal of Statistical Mechanics: Theory and Experiment |
---|---|
Main Authors: | , |
Other Authors: | , , , , , , , , |
Format: | Report |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.science/hal-02933352 https://doi.org/10.1088/1742-5468/abcd34 |
id |
ftunivstetienne:oai:HAL:hal-02933352v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivstetienne:oai:HAL:hal-02933352v1 2024-09-09T19:25:35+00:00 Non-probabilistic fermionic limit shapes Bocini, Saverio Stéphan, Jean-Marie Institut Camille Jordan (ICJ) École Centrale de Lyon (ECL) Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS) Probabilités, statistique, physique mathématique (PSPM) Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL) Università degli Studi di Firenze = University of Florence = Université de Florence (UniFI) ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018) 2020-09-08 https://hal.science/hal-02933352 https://doi.org/10.1088/1742-5468/abcd34 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/arxiv/2007.06621 info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/abcd34 hal-02933352 https://hal.science/hal-02933352 ARXIV: 2007.06621 doi:10.1088/1742-5468/abcd34 https://hal.science/hal-02933352 2020 [PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] [PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] info:eu-repo/semantics/preprint Preprints, Working Papers, . 2020 ftunivstetienne https://doi.org/10.1088/1742-5468/abcd34 2024-07-09T00:05:37Z 23 pages, 8 figures We study a translational invariant free fermions model in imaginary time, with nearest neighbor and next-nearest neighbor hopping terms, for a class of inhomogeneous boundary conditions. This model is known to give rise to limit shapes and arctic curves, in the absence of the next-nearest neighbor perturbation. The perturbation considered turns out to not be always positive, that is, the corresponding statistical mechanical model does not always have positive Boltzmann weights. We investigate how the density profile is affected by this nonpositive perturbation. We find that in some regions, the effects of the negative signs are suppressed, and renormalize to zero. However, depending on boundary conditions, new ``crazy regions'' emerge, in which minus signs proliferate, and the density of fermions is not in $[0,1]$ anymore. We provide a simple intuition for such behavior, and compute exactly the density profile both on the lattice and in the scaling limit. Report Arctic Université Jean Monnet – Saint-Etienne: HAL Arctic Journal of Statistical Mechanics: Theory and Experiment 2021 1 013204 |
institution |
Open Polar |
collection |
Université Jean Monnet – Saint-Etienne: HAL |
op_collection_id |
ftunivstetienne |
language |
English |
topic |
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] [PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] |
spellingShingle |
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] [PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] Bocini, Saverio Stéphan, Jean-Marie Non-probabilistic fermionic limit shapes |
topic_facet |
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] [PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] |
description |
23 pages, 8 figures We study a translational invariant free fermions model in imaginary time, with nearest neighbor and next-nearest neighbor hopping terms, for a class of inhomogeneous boundary conditions. This model is known to give rise to limit shapes and arctic curves, in the absence of the next-nearest neighbor perturbation. The perturbation considered turns out to not be always positive, that is, the corresponding statistical mechanical model does not always have positive Boltzmann weights. We investigate how the density profile is affected by this nonpositive perturbation. We find that in some regions, the effects of the negative signs are suppressed, and renormalize to zero. However, depending on boundary conditions, new ``crazy regions'' emerge, in which minus signs proliferate, and the density of fermions is not in $[0,1]$ anymore. We provide a simple intuition for such behavior, and compute exactly the density profile both on the lattice and in the scaling limit. |
author2 |
Institut Camille Jordan (ICJ) École Centrale de Lyon (ECL) Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS) Probabilités, statistique, physique mathématique (PSPM) Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL) Università degli Studi di Firenze = University of Florence = Université de Florence (UniFI) ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018) |
format |
Report |
author |
Bocini, Saverio Stéphan, Jean-Marie |
author_facet |
Bocini, Saverio Stéphan, Jean-Marie |
author_sort |
Bocini, Saverio |
title |
Non-probabilistic fermionic limit shapes |
title_short |
Non-probabilistic fermionic limit shapes |
title_full |
Non-probabilistic fermionic limit shapes |
title_fullStr |
Non-probabilistic fermionic limit shapes |
title_full_unstemmed |
Non-probabilistic fermionic limit shapes |
title_sort |
non-probabilistic fermionic limit shapes |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal.science/hal-02933352 https://doi.org/10.1088/1742-5468/abcd34 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic |
genre_facet |
Arctic |
op_source |
https://hal.science/hal-02933352 2020 |
op_relation |
info:eu-repo/semantics/altIdentifier/arxiv/2007.06621 info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/abcd34 hal-02933352 https://hal.science/hal-02933352 ARXIV: 2007.06621 doi:10.1088/1742-5468/abcd34 |
op_doi |
https://doi.org/10.1088/1742-5468/abcd34 |
container_title |
Journal of Statistical Mechanics: Theory and Experiment |
container_volume |
2021 |
container_issue |
1 |
container_start_page |
013204 |
_version_ |
1809895344491724800 |