Dendrochronology and extreme pointer years in the tree-ring record (AD 1951-2011) of polar willow from southwestern Spitsbergen (Svalbard, Norway)
Greater warmth and precipitation over the past several decades in the High Arctic, as recorded in meteorological data, have caused shrub expansion and affected growth ring widths. The main aim of the study was to develop a tree-ring chronology of polar willow (Salix polaris Wahlenb.) from southwest...
Published in: | Geochronometria |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/20.500.12128/8951 https://doi.org/10.1515/geochr-2015-0035 |
Summary: | Greater warmth and precipitation over the past several decades in the High Arctic, as recorded in meteorological data, have caused shrub expansion and affected growth ring widths. The main aim of the study was to develop a tree-ring chronology of polar willow (Salix polaris Wahlenb.) from southwest Spitsbergen, attempt to explain its extreme pointer years (extremely low value of growthring widths) and to demonstrate the dendrochronological potential of this species. This plant is a deciduous, prostrate, creeping dwarf shrub that produces anatomically distinct annual growth rings with the consistent ring width variation. After using serial sectioning we developed rigorously cross-dated ring width chronology covering the period 1951–2011. Since the beginning of the 1980s an increase of the mean and maximum growth ring width has been observed which is consistent with the increase of both temperature and precipitation in the Arctic reported from meteorological sources. Nine negative extreme years were distinguished and explained by complex hydroclimatic drivers, which highlight the importance of availability of moisture from snowpack and spring precipitation. An additional negative factor present in the years with very low dwarf shrubs growth is rapid thawing and fast freezing during winter as well as low sunshine duration. Our results contradict the prior assumption that inter-annual tree growth variability of dwarf shrubs from polar regions is controlled simply by temperature. |
---|