Molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (METASTRESS)

The ongoing decreasing surface pH that seas and oceans are facing is termed ocean acidification (OA). The primary reason for this phenomenon is the emission of carbon dioxide (CO2) into the atmosphere from human activities, like the burning of fossil fuels, which has drastically increased since the...

Full description

Bibliographic Details
Main Author: Simonetti, Silvia
Other Authors: CORSI, ILARIA
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Università degli Studi di Siena 2024
Subjects:
Online Access:https://hdl.handle.net/11365/1262117
id ftunivsiena:oai:usiena-air.unisi.it:11365/1262117
record_format openpolar
spelling ftunivsiena:oai:usiena-air.unisi.it:11365/1262117 2024-06-23T07:55:49+00:00 Molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (METASTRESS) Simonetti, Silvia Simonetti, Silvia CORSI, ILARIA 2024 https://hdl.handle.net/11365/1262117 eng eng Università degli Studi di Siena place:Siena numberofpages:155 https://hdl.handle.net/11365/1262117 Ocean acidification ABC protein transporters Tolerance to acid stress Polychaeta Cyanobacteria Ischia CO2 vents Settore BIO/07 - Ecologia info:eu-repo/semantics/doctoralThesis 2024 ftunivsiena 2024-06-11T14:09:35Z The ongoing decreasing surface pH that seas and oceans are facing is termed ocean acidification (OA). The primary reason for this phenomenon is the emission of carbon dioxide (CO2) into the atmosphere from human activities, like the burning of fossil fuels, which has drastically increased since the industrial revolution, reaching higher levels during these decades. This environmental risk is considered among the most hazardous threats to marine ecosystems associated with global change and severely affects marine life worldwide. Responses of marine species to acidified seawaters have been deeply studied and adverse effects at different levels, from single species up to whole communities, have been pointed out. Although OA is clearly posing a threat to marine life, some species have demonstrated the ability to tolerate and thrive in such conditions. Information on the mechanisms driving the tolerance of adapted species to decrease seawater pH is limited, and new knowledge may be obtained from species inhabiting sites with naturally low pH, such as the volcanic CO2 system off the Castello Aragonese on the Ischia Island (Italy). Understanding the molecular mechanisms of adaptation enabling marine species to tolerate a lowered seawater pH could support predictions of the consequences of future OA scenarios for marine life. Growing evidence of the involvement of ABC transport proteins in resistance towards acid stress in bacteria and tumor cell lines has been demonstrated. Researchers have suggested that the tolerance to this kind of stress is due to the transport of substances that contribute to the maintenance of internal cell homeostasis carried out by the ABC proteins. Here, we aimed at elucidating the involvement of ABC transport proteins in tolerance to low-pH/high-pCO2 environments, by investigating their gene regulation, in species of marine microorganisms and metazoans considered tolerant to acidified environments. Halomicronema metazoicum is a marine filamentous cyanobacterium able to cope with hostile ... Doctoral or Postdoctoral Thesis Ocean acidification Università degli Studi di Siena: USiena air
institution Open Polar
collection Università degli Studi di Siena: USiena air
op_collection_id ftunivsiena
language English
topic Ocean acidification
ABC protein transporters
Tolerance to acid stress
Polychaeta
Cyanobacteria
Ischia CO2 vents
Settore BIO/07 - Ecologia
spellingShingle Ocean acidification
ABC protein transporters
Tolerance to acid stress
Polychaeta
Cyanobacteria
Ischia CO2 vents
Settore BIO/07 - Ecologia
Simonetti, Silvia
Molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (METASTRESS)
topic_facet Ocean acidification
ABC protein transporters
Tolerance to acid stress
Polychaeta
Cyanobacteria
Ischia CO2 vents
Settore BIO/07 - Ecologia
description The ongoing decreasing surface pH that seas and oceans are facing is termed ocean acidification (OA). The primary reason for this phenomenon is the emission of carbon dioxide (CO2) into the atmosphere from human activities, like the burning of fossil fuels, which has drastically increased since the industrial revolution, reaching higher levels during these decades. This environmental risk is considered among the most hazardous threats to marine ecosystems associated with global change and severely affects marine life worldwide. Responses of marine species to acidified seawaters have been deeply studied and adverse effects at different levels, from single species up to whole communities, have been pointed out. Although OA is clearly posing a threat to marine life, some species have demonstrated the ability to tolerate and thrive in such conditions. Information on the mechanisms driving the tolerance of adapted species to decrease seawater pH is limited, and new knowledge may be obtained from species inhabiting sites with naturally low pH, such as the volcanic CO2 system off the Castello Aragonese on the Ischia Island (Italy). Understanding the molecular mechanisms of adaptation enabling marine species to tolerate a lowered seawater pH could support predictions of the consequences of future OA scenarios for marine life. Growing evidence of the involvement of ABC transport proteins in resistance towards acid stress in bacteria and tumor cell lines has been demonstrated. Researchers have suggested that the tolerance to this kind of stress is due to the transport of substances that contribute to the maintenance of internal cell homeostasis carried out by the ABC proteins. Here, we aimed at elucidating the involvement of ABC transport proteins in tolerance to low-pH/high-pCO2 environments, by investigating their gene regulation, in species of marine microorganisms and metazoans considered tolerant to acidified environments. Halomicronema metazoicum is a marine filamentous cyanobacterium able to cope with hostile ...
author2 Simonetti, Silvia
CORSI, ILARIA
format Doctoral or Postdoctoral Thesis
author Simonetti, Silvia
author_facet Simonetti, Silvia
author_sort Simonetti, Silvia
title Molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (METASTRESS)
title_short Molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (METASTRESS)
title_full Molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (METASTRESS)
title_fullStr Molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (METASTRESS)
title_full_unstemmed Molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (METASTRESS)
title_sort molecular bases and evolutionary constraints of cellular acid tolerance in cyanobacteria and invertebrates subjected to ocean acidification and other sources of stress (metastress)
publisher Università degli Studi di Siena
publishDate 2024
url https://hdl.handle.net/11365/1262117
genre Ocean acidification
genre_facet Ocean acidification
op_relation numberofpages:155
https://hdl.handle.net/11365/1262117
_version_ 1802648550448824320