Suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (CLASS)

Les régions de haute latitude sont actuellement les plus sensibles aux effets du réchauffement climatique, et avec des élévations de température pouvant atteindre les 3 à 8 ◦C au niveau du pôle sur les 100 prochaines années. Les pergélisols (sols présentant des températures négatives deux années con...

Full description

Bibliographic Details
Main Author: Marchand, Nicolas
Other Authors: Royer, Alain, Krinner, Gerhard
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: Université de Sherbrooke 2017
Subjects:
Online Access:http://hdl.handle.net/11143/10591
id ftunivsherbrooke:oai:savoirs.usherbrooke.ca:11143/10591
record_format openpolar
institution Open Polar
collection Université de Sherbrooke: Savoirs UdeS
op_collection_id ftunivsherbrooke
language French
topic Pergélisol
Micro-ondes passives
Infra-rouge thermique
Manteau neigeux
Températures du sol
Ratio de polarisation micro-ondes
Modélisation
Permafrost
Passive microwaves
Thermal infrared
Snow cover
Ground temperature
Microwaves polarization ratio
Modelization
spellingShingle Pergélisol
Micro-ondes passives
Infra-rouge thermique
Manteau neigeux
Températures du sol
Ratio de polarisation micro-ondes
Modélisation
Permafrost
Passive microwaves
Thermal infrared
Snow cover
Ground temperature
Microwaves polarization ratio
Modelization
Marchand, Nicolas
Suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (CLASS)
topic_facet Pergélisol
Micro-ondes passives
Infra-rouge thermique
Manteau neigeux
Températures du sol
Ratio de polarisation micro-ondes
Modélisation
Permafrost
Passive microwaves
Thermal infrared
Snow cover
Ground temperature
Microwaves polarization ratio
Modelization
description Les régions de haute latitude sont actuellement les plus sensibles aux effets du réchauffement climatique, et avec des élévations de température pouvant atteindre les 3 à 8 ◦C au niveau du pôle sur les 100 prochaines années. Les pergélisols (sols présentant des températures négatives deux années consécutives) sont présents sur 25 % des terres émergées de l’hémisphère nord et contiennent de grandes quantités de carbone « gelé », estimées à 1400 Gt (40 % de la quantité de carbone terrestre global). Des études récentes ont montré qu’une partie non négligeable (50 %) des premiers mètres des pergélisols pourraient fondre d’ici 2050, et 90 % d’ici 2100. Le but de l’étude est donc d’améliorer les moyens de suivi de l’évolution des températures du sol dans les zones arctiques, et plus particulièrement dans les régions couvertes de neige. L’objectif est de décrire la température du sol tout au long de l’année y compris sous un manteau neigeux, et d’analyser l’évolution de l’épaisseur de la couche active des pergélisols en relation avec la variabilité du climat. Nous utilisons des données satellites (fusion de données de température dans l’infra-rouge thermique “LST” et de température de brillance micro-onde AMSR-E « Tb ») assimilées dans le schéma de surface du modèle climatique canadien (CLASS, V 3.6) couplé à un modèle simple de transfert radiatif (HUT). Cette approche bénéficie des avantages de chaque type de donnée de manière à réaliser deux objectifs spécifiques : 1-construire une méthodologie solide permettant de retrouver les températures du sol, avec et sans neige, en zone de toundra, et 2-à partir de ces températures du sol, dériver la durée de fonte estivale et l’épaisseur de la couche active du pergélisol. Nous décrivons le couplage des modèles ainsi que la méthodologie permettant l’ajustement des paramètres météorologiques d’entrée du modèle CLASS (essentiellement les températures de l’air et les précipitations issues de la base de données des réanalyses météorologiques NARR) de manière à minimiser les LST et Tb simulées en comparaison aux mesures satellites. Par rapport aux données de mesures de sol de stations météorologiques prises comme référence pour validation dans les zones de toundra d’Amérique du Nord, les résultats montrent que la méthode proposée améliore significativement la simulation des températures du sol lorsqu’on utilise les données LST MODIS et Tb à 10 et 19 GHz pour contraindre le modèle, en comparaison avec les sorties du modèle sans les données satellites. Dans ce processus d’inversion, la correction de l’évolution des conditions de neige au cours de l’hiver contrainte avec le rapport de polarisation à 11 GHz constitue une approche originale. Une analyse de l’erreur pour 4 sites de toundra et sur plusieurs années (18 cas) est effectuée pour la période estivale (1,7 -3,6 K) ainsi que pour la période hivernale couverte de neige (1,8 -3,5 K). L’indice des degrés-jours de fontes annuel, dérivé des températures du sol simulés par notre approche, permet de cartographier les zones de pergélisols continu en accord avec les cartes actuelles. Un meilleur suivi des processus d’évolution des pergélisols, et tout particulièrement de l’impact de la couverture de neige, devrait permettre une meilleure compréhension des effets du réchauffement climatique sur la fonte des pergélisols et l’avenir de leurs stocks de carbone. Abstract : High latitude areas currently are the most sensitive to global warming effects. In the next 100 years, temperature could rise up to 3 to 8 ◦C at the North Pole. Permafrost (ground with negative temperatures two years in a row) represents 25% of northern hemisphere lands, and contains huge quantities of "frozen" carbon estimated at 1400 Gt (40 % of the global terrestrial carbon). Recent studies showed that a part (50 %) of the permafrost first few meters could melt by 2050, and 90 % by 2100. The goal of our study is to improve our understanding of ground temperature evolution in arctic areas, especially in snow covered regions. The objective is to discribe the ground temperature all year long with and without a snow cover, and to analyze the evolution of the permafrost’s active layer in relation with the climate variability. We use remote sensing data (fuzzed of MODIS "LST" surface temperatures and AMSR-E "Tb" brightness temperatures) assimilated in the canadian landscape surface scheme (CLASS) coupled to a simple radiative transfer model (HUT). This approach takes into account the advantages of each kind of data in order to achieve two objectives : 1 - build a solid methodology allowing to retrieve ground temperatures, with and without a snow cover, in tundra areas 2 - from those retrieved ground temperatures, derive the summer melting duration which can be linked to the permafrost active layer thickness. We describe the models coupling as well as the methodology allowing the adjustement of CLASS input meteorological parameters (essentially the air temperatures and precipitations from the NARR meteorological data base) in order to minimize the simulated LST and Tb in comparison to remote sensing data. By using meteorological station’s ground temperature measurments as a reference for validation in North America tundra areas, results show that the proposed method improves the simulation of ground temperatures when using LST MODIS and Tb at 10 and 19 GHz data to constrain the model, in comparison with model outputs without satellite data. Using the Tb polarization ratio H/V at 10 GHz allows an improvement of the constrain on winter period simulations. An analyze of the error is conducted for summer (1,7 - 3,6 K) and winter (1,8 - 3,5 K). We present climatic applications for future work that meets the second objective of the Ph.D. A better understanding of evolution processes of permafrost, and particularly of the impact of the snow cover, should allow us a better understanding of global warming effects on the permafrost’s melting and the future of their carbon stocks.
author2 Royer, Alain
Krinner, Gerhard
format Doctoral or Postdoctoral Thesis
author Marchand, Nicolas
author_facet Marchand, Nicolas
author_sort Marchand, Nicolas
title Suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (CLASS)
title_short Suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (CLASS)
title_full Suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (CLASS)
title_fullStr Suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (CLASS)
title_full_unstemmed Suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (CLASS)
title_sort suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (class)
publisher Université de Sherbrooke
publishDate 2017
url http://hdl.handle.net/11143/10591
geographic Arctic
North Pole
geographic_facet Arctic
North Pole
genre Active layer thickness
Arctic
Arctique*
Global warming
North Pole
permafrost
toundra
Tundra
pergélisol
genre_facet Active layer thickness
Arctic
Arctique*
Global warming
North Pole
permafrost
toundra
Tundra
pergélisol
op_relation http://hdl.handle.net/11143/10591
op_rights © Nicolas Marchand
_version_ 1766340663310286848
spelling ftunivsherbrooke:oai:savoirs.usherbrooke.ca:11143/10591 2023-05-15T13:03:37+02:00 Suivi de la température de surface dans les zones de pergélisol arctique par l'utilisation de données de télédétection inversées dans le schéma de surface du modèle climatique canadien (CLASS) Marchand, Nicolas Royer, Alain Krinner, Gerhard 2017 http://hdl.handle.net/11143/10591 fre fre Université de Sherbrooke http://hdl.handle.net/11143/10591 © Nicolas Marchand Pergélisol Micro-ondes passives Infra-rouge thermique Manteau neigeux Températures du sol Ratio de polarisation micro-ondes Modélisation Permafrost Passive microwaves Thermal infrared Snow cover Ground temperature Microwaves polarization ratio Modelization Thèse 2017 ftunivsherbrooke 2021-12-24T15:29:55Z Les régions de haute latitude sont actuellement les plus sensibles aux effets du réchauffement climatique, et avec des élévations de température pouvant atteindre les 3 à 8 ◦C au niveau du pôle sur les 100 prochaines années. Les pergélisols (sols présentant des températures négatives deux années consécutives) sont présents sur 25 % des terres émergées de l’hémisphère nord et contiennent de grandes quantités de carbone « gelé », estimées à 1400 Gt (40 % de la quantité de carbone terrestre global). Des études récentes ont montré qu’une partie non négligeable (50 %) des premiers mètres des pergélisols pourraient fondre d’ici 2050, et 90 % d’ici 2100. Le but de l’étude est donc d’améliorer les moyens de suivi de l’évolution des températures du sol dans les zones arctiques, et plus particulièrement dans les régions couvertes de neige. L’objectif est de décrire la température du sol tout au long de l’année y compris sous un manteau neigeux, et d’analyser l’évolution de l’épaisseur de la couche active des pergélisols en relation avec la variabilité du climat. Nous utilisons des données satellites (fusion de données de température dans l’infra-rouge thermique “LST” et de température de brillance micro-onde AMSR-E « Tb ») assimilées dans le schéma de surface du modèle climatique canadien (CLASS, V 3.6) couplé à un modèle simple de transfert radiatif (HUT). Cette approche bénéficie des avantages de chaque type de donnée de manière à réaliser deux objectifs spécifiques : 1-construire une méthodologie solide permettant de retrouver les températures du sol, avec et sans neige, en zone de toundra, et 2-à partir de ces températures du sol, dériver la durée de fonte estivale et l’épaisseur de la couche active du pergélisol. Nous décrivons le couplage des modèles ainsi que la méthodologie permettant l’ajustement des paramètres météorologiques d’entrée du modèle CLASS (essentiellement les températures de l’air et les précipitations issues de la base de données des réanalyses météorologiques NARR) de manière à minimiser les LST et Tb simulées en comparaison aux mesures satellites. Par rapport aux données de mesures de sol de stations météorologiques prises comme référence pour validation dans les zones de toundra d’Amérique du Nord, les résultats montrent que la méthode proposée améliore significativement la simulation des températures du sol lorsqu’on utilise les données LST MODIS et Tb à 10 et 19 GHz pour contraindre le modèle, en comparaison avec les sorties du modèle sans les données satellites. Dans ce processus d’inversion, la correction de l’évolution des conditions de neige au cours de l’hiver contrainte avec le rapport de polarisation à 11 GHz constitue une approche originale. Une analyse de l’erreur pour 4 sites de toundra et sur plusieurs années (18 cas) est effectuée pour la période estivale (1,7 -3,6 K) ainsi que pour la période hivernale couverte de neige (1,8 -3,5 K). L’indice des degrés-jours de fontes annuel, dérivé des températures du sol simulés par notre approche, permet de cartographier les zones de pergélisols continu en accord avec les cartes actuelles. Un meilleur suivi des processus d’évolution des pergélisols, et tout particulièrement de l’impact de la couverture de neige, devrait permettre une meilleure compréhension des effets du réchauffement climatique sur la fonte des pergélisols et l’avenir de leurs stocks de carbone. Abstract : High latitude areas currently are the most sensitive to global warming effects. In the next 100 years, temperature could rise up to 3 to 8 ◦C at the North Pole. Permafrost (ground with negative temperatures two years in a row) represents 25% of northern hemisphere lands, and contains huge quantities of "frozen" carbon estimated at 1400 Gt (40 % of the global terrestrial carbon). Recent studies showed that a part (50 %) of the permafrost first few meters could melt by 2050, and 90 % by 2100. The goal of our study is to improve our understanding of ground temperature evolution in arctic areas, especially in snow covered regions. The objective is to discribe the ground temperature all year long with and without a snow cover, and to analyze the evolution of the permafrost’s active layer in relation with the climate variability. We use remote sensing data (fuzzed of MODIS "LST" surface temperatures and AMSR-E "Tb" brightness temperatures) assimilated in the canadian landscape surface scheme (CLASS) coupled to a simple radiative transfer model (HUT). This approach takes into account the advantages of each kind of data in order to achieve two objectives : 1 - build a solid methodology allowing to retrieve ground temperatures, with and without a snow cover, in tundra areas 2 - from those retrieved ground temperatures, derive the summer melting duration which can be linked to the permafrost active layer thickness. We describe the models coupling as well as the methodology allowing the adjustement of CLASS input meteorological parameters (essentially the air temperatures and precipitations from the NARR meteorological data base) in order to minimize the simulated LST and Tb in comparison to remote sensing data. By using meteorological station’s ground temperature measurments as a reference for validation in North America tundra areas, results show that the proposed method improves the simulation of ground temperatures when using LST MODIS and Tb at 10 and 19 GHz data to constrain the model, in comparison with model outputs without satellite data. Using the Tb polarization ratio H/V at 10 GHz allows an improvement of the constrain on winter period simulations. An analyze of the error is conducted for summer (1,7 - 3,6 K) and winter (1,8 - 3,5 K). We present climatic applications for future work that meets the second objective of the Ph.D. A better understanding of evolution processes of permafrost, and particularly of the impact of the snow cover, should allow us a better understanding of global warming effects on the permafrost’s melting and the future of their carbon stocks. Doctoral or Postdoctoral Thesis Active layer thickness Arctic Arctique* Global warming North Pole permafrost toundra Tundra pergélisol Université de Sherbrooke: Savoirs UdeS Arctic North Pole