Internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations.

The Southern Ocean plays a key role in global ocean circulation by connecting the major ocean basins with the intense Antarctic Circumpolar Current and as a formation region for abyssal water masses of the global ocean. Understanding the diapycnal mixing processes that link these abyssal waters to t...

Full description

Bibliographic Details
Main Author: Labreuche, Pierre
Other Authors: Laboratoire des Écoulements Géophysiques et Industriels Grenoble (LEGI), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Chantal Staquet, Julien Le Sommer
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://theses.hal.science/tel-01684248
https://theses.hal.science/tel-01684248/document
https://theses.hal.science/tel-01684248/file/LABREUCHE_2015_archivage.pdf
id ftunivsavoie:oai:HAL:tel-01684248v1
record_format openpolar
institution Open Polar
collection Université Savoie Mont Blanc: HAL
op_collection_id ftunivsavoie
language English
topic Oceanography
Internal lee waves
Diapycnal mixing
Turbulent kinetic energy dissipation
Wave-wave interactions
Wave-mean flow interactions
Océanographie
Ondes internes de relief
Mélange diapycnal
Dissipation d'énergie cinétique turbulente
Intéractions onde-onde
Intéractions onde-courant moyen
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle Oceanography
Internal lee waves
Diapycnal mixing
Turbulent kinetic energy dissipation
Wave-wave interactions
Wave-mean flow interactions
Océanographie
Ondes internes de relief
Mélange diapycnal
Dissipation d'énergie cinétique turbulente
Intéractions onde-onde
Intéractions onde-courant moyen
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Labreuche, Pierre
Internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations.
topic_facet Oceanography
Internal lee waves
Diapycnal mixing
Turbulent kinetic energy dissipation
Wave-wave interactions
Wave-mean flow interactions
Océanographie
Ondes internes de relief
Mélange diapycnal
Dissipation d'énergie cinétique turbulente
Intéractions onde-onde
Intéractions onde-courant moyen
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description The Southern Ocean plays a key role in global ocean circulation by connecting the major ocean basins with the intense Antarctic Circumpolar Current and as a formation region for abyssal water masses of the global ocean. Understanding the diapycnal mixing processes that link these abyssal waters to the overlying layers is essential both for ocean modelling and for predicting future climate change. In the Southern Ocean, deep reaching currents impinge on rough topography and create highly energetic internal lee waves. The dissipation of the energy of these internal lee waves is the main candidate for explaining the high mixing rates between waters of different densities observed at these latitudes. The purpose of this study is to understand the fate of the internal lee wave energy and how it affects the circulation and diapycnal mixing in the abyssal ocean. We first study the impact of internal lee waves on deep mixing with the combination of field expertise, two-dimensional non hydrostatic numerical simulations and theoretical developments. Over the range of parameters studied, an enhanced bottom turbulent kinetic energy dissipation is observed in the bottom 1000 m, typically reaching ~20 mW/m2. We further show that internal lee waves undergo non-dissipative wave-wave interactions that can be rationalized as resonant triad interactions between the bottom emitted internal lee waves, inertial oscillations and linear combinations of these two waves. We then build a three-dimensional model configuration and specific diagnostic methods that pave the way for future investigations in three dimensions. Preliminary results with the three-dimensional numerical configuration show that the meridional confinement of the topography notably reduces the emission of internal lee waves. L'Océan Austral est une zone clef pour la circulation océanique tant à cause de l'intensité du courant circumpolaire antarctique qu'en tant que région de formation des masses d'eaux abyssales de l'océan global. Pour modéliser l'océan et prévoir ...
author2 Laboratoire des Écoulements Géophysiques et Industriels Grenoble (LEGI)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Université Grenoble Alpes
Chantal Staquet
Julien Le Sommer
format Doctoral or Postdoctoral Thesis
author Labreuche, Pierre
author_facet Labreuche, Pierre
author_sort Labreuche, Pierre
title Internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations.
title_short Internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations.
title_full Internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations.
title_fullStr Internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations.
title_full_unstemmed Internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations.
title_sort internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations.
publisher HAL CCSD
publishDate 2015
url https://theses.hal.science/tel-01684248
https://theses.hal.science/tel-01684248/document
https://theses.hal.science/tel-01684248/file/LABREUCHE_2015_archivage.pdf
genre Antarc*
Antarctic
Antarctique*
Southern Ocean
genre_facet Antarc*
Antarctic
Antarctique*
Southern Ocean
op_source https://theses.hal.science/tel-01684248
Earth Sciences. Université Grenoble Alpes, 2015. English. ⟨NNT : 2015GREAU035⟩
op_relation NNT: 2015GREAU035
tel-01684248
https://theses.hal.science/tel-01684248
https://theses.hal.science/tel-01684248/document
https://theses.hal.science/tel-01684248/file/LABREUCHE_2015_archivage.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1797589721177653248
spelling ftunivsavoie:oai:HAL:tel-01684248v1 2024-04-28T07:57:40+00:00 Internal lee waves in the abyssal ocean : diapycnal mixing and interactions with inertial oscillations. Ondes de relief dans l'océan profond : mélange diapycnal et interactions avec les oscillations inertielles Labreuche, Pierre Laboratoire des Écoulements Géophysiques et Industriels Grenoble (LEGI) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Université Grenoble Alpes Chantal Staquet Julien Le Sommer 2015-04-02 https://theses.hal.science/tel-01684248 https://theses.hal.science/tel-01684248/document https://theses.hal.science/tel-01684248/file/LABREUCHE_2015_archivage.pdf en eng HAL CCSD NNT: 2015GREAU035 tel-01684248 https://theses.hal.science/tel-01684248 https://theses.hal.science/tel-01684248/document https://theses.hal.science/tel-01684248/file/LABREUCHE_2015_archivage.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-01684248 Earth Sciences. Université Grenoble Alpes, 2015. English. ⟨NNT : 2015GREAU035⟩ Oceanography Internal lee waves Diapycnal mixing Turbulent kinetic energy dissipation Wave-wave interactions Wave-mean flow interactions Océanographie Ondes internes de relief Mélange diapycnal Dissipation d'énergie cinétique turbulente Intéractions onde-onde Intéractions onde-courant moyen [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/doctoralThesis Theses 2015 ftunivsavoie 2024-04-11T00:56:24Z The Southern Ocean plays a key role in global ocean circulation by connecting the major ocean basins with the intense Antarctic Circumpolar Current and as a formation region for abyssal water masses of the global ocean. Understanding the diapycnal mixing processes that link these abyssal waters to the overlying layers is essential both for ocean modelling and for predicting future climate change. In the Southern Ocean, deep reaching currents impinge on rough topography and create highly energetic internal lee waves. The dissipation of the energy of these internal lee waves is the main candidate for explaining the high mixing rates between waters of different densities observed at these latitudes. The purpose of this study is to understand the fate of the internal lee wave energy and how it affects the circulation and diapycnal mixing in the abyssal ocean. We first study the impact of internal lee waves on deep mixing with the combination of field expertise, two-dimensional non hydrostatic numerical simulations and theoretical developments. Over the range of parameters studied, an enhanced bottom turbulent kinetic energy dissipation is observed in the bottom 1000 m, typically reaching ~20 mW/m2. We further show that internal lee waves undergo non-dissipative wave-wave interactions that can be rationalized as resonant triad interactions between the bottom emitted internal lee waves, inertial oscillations and linear combinations of these two waves. We then build a three-dimensional model configuration and specific diagnostic methods that pave the way for future investigations in three dimensions. Preliminary results with the three-dimensional numerical configuration show that the meridional confinement of the topography notably reduces the emission of internal lee waves. L'Océan Austral est une zone clef pour la circulation océanique tant à cause de l'intensité du courant circumpolaire antarctique qu'en tant que région de formation des masses d'eaux abyssales de l'océan global. Pour modéliser l'océan et prévoir ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Antarctique* Southern Ocean Université Savoie Mont Blanc: HAL