Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice

International audience Despite their high potential for accurate sea ice properties estimation, seismic methods are still limited by the difficulty of access and the challenging logistics of polar environments. Conventional seismic methods generally require tens of geophones together with active sei...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Moreau, Ludovic, Weiss, Jérôme, Marsan, David
Other Authors: Institut des Sciences de la Terre (ISTerre), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://insu.hal.science/insu-03594474
https://insu.hal.science/insu-03594474/document
https://insu.hal.science/insu-03594474/file/JGR%20Oceans%20-%202020%20-%20Moreau%20-%20Accurate%20Estimations%20of%20Sea%25E2%2580%2590Ice%20Thickness%20and%20Elastic%20Properties%20From%20Seismic%20Noise%20Recorded.pdf
https://doi.org/10.1029/2020JC016492
id ftunivsavoie:oai:HAL:insu-03594474v1
record_format openpolar
spelling ftunivsavoie:oai:HAL:insu-03594474v1 2024-04-21T07:55:48+00:00 Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice Moreau, Ludovic Weiss, Jérôme Marsan, David Institut des Sciences de la Terre (ISTerre) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA) 2020 https://insu.hal.science/insu-03594474 https://insu.hal.science/insu-03594474/document https://insu.hal.science/insu-03594474/file/JGR%20Oceans%20-%202020%20-%20Moreau%20-%20Accurate%20Estimations%20of%20Sea%25E2%2580%2590Ice%20Thickness%20and%20Elastic%20Properties%20From%20Seismic%20Noise%20Recorded.pdf https://doi.org/10.1029/2020JC016492 en eng HAL CCSD Wiley-Blackwell info:eu-repo/semantics/altIdentifier/doi/10.1029/2020JC016492 insu-03594474 https://insu.hal.science/insu-03594474 https://insu.hal.science/insu-03594474/document https://insu.hal.science/insu-03594474/file/JGR%20Oceans%20-%202020%20-%20Moreau%20-%20Accurate%20Estimations%20of%20Sea%25E2%2580%2590Ice%20Thickness%20and%20Elastic%20Properties%20From%20Seismic%20Noise%20Recorded.pdf BIBCODE: 2020JGRC.12516492M doi:10.1029/2020JC016492 http://hal.archives-ouvertes.fr/licences/copyright/ info:eu-repo/semantics/OpenAccess ISSN: 2169-9275 EISSN: 2169-9291 Journal of Geophysical Research. Oceans https://insu.hal.science/insu-03594474 Journal of Geophysical Research. Oceans, 2020, 125, pp.2141-2167. ⟨10.1029/2020JC016492⟩ monitoring sea ice seismic noise [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2020 ftunivsavoie https://doi.org/10.1029/2020JC016492 2024-04-11T00:33:51Z International audience Despite their high potential for accurate sea ice properties estimation, seismic methods are still limited by the difficulty of access and the challenging logistics of polar environments. Conventional seismic methods generally require tens of geophones together with active seismic sources for monitoring applications. While this is not an issue for mainland environment, it is restrictive for sea ice and prevents long-term monitoring. We introduce a method to estimate sea ice thickness and elastic properties from passive recordings of the ambient seismic field with a minimal number of geophones. In comparison with our previous work (Moreau et al., 2020; https://doi.org/10.1029/2019JC015709 ) where about 50 sensors were used, the number of geophones is reduced by 1 order of magnitude, thanks to a new strategy of inversion of the passive seismic data. The method combines noise interferometry for estimating the elastic properties, with a Bayesian inversion of the dispersion in the waveforms of icequakes for inferring ice thickness, based on passive recordings from only 3-5 geophones, depending on the signal to noise ratio. We demonstrate its potential both on data recorded on thin landfast ice in Svalbard, and on data recorded on thick pack ice in the Arctic ocean. Article in Journal/Newspaper Arctic Ocean Sea ice Svalbard Université Savoie Mont Blanc: HAL Journal of Geophysical Research: Oceans 125 11
institution Open Polar
collection Université Savoie Mont Blanc: HAL
op_collection_id ftunivsavoie
language English
topic monitoring
sea ice
seismic noise
[SDU]Sciences of the Universe [physics]
spellingShingle monitoring
sea ice
seismic noise
[SDU]Sciences of the Universe [physics]
Moreau, Ludovic
Weiss, Jérôme
Marsan, David
Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice
topic_facet monitoring
sea ice
seismic noise
[SDU]Sciences of the Universe [physics]
description International audience Despite their high potential for accurate sea ice properties estimation, seismic methods are still limited by the difficulty of access and the challenging logistics of polar environments. Conventional seismic methods generally require tens of geophones together with active seismic sources for monitoring applications. While this is not an issue for mainland environment, it is restrictive for sea ice and prevents long-term monitoring. We introduce a method to estimate sea ice thickness and elastic properties from passive recordings of the ambient seismic field with a minimal number of geophones. In comparison with our previous work (Moreau et al., 2020; https://doi.org/10.1029/2019JC015709 ) where about 50 sensors were used, the number of geophones is reduced by 1 order of magnitude, thanks to a new strategy of inversion of the passive seismic data. The method combines noise interferometry for estimating the elastic properties, with a Bayesian inversion of the dispersion in the waveforms of icequakes for inferring ice thickness, based on passive recordings from only 3-5 geophones, depending on the signal to noise ratio. We demonstrate its potential both on data recorded on thin landfast ice in Svalbard, and on data recorded on thick pack ice in the Arctic ocean.
author2 Institut des Sciences de la Terre (ISTerre)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
format Article in Journal/Newspaper
author Moreau, Ludovic
Weiss, Jérôme
Marsan, David
author_facet Moreau, Ludovic
Weiss, Jérôme
Marsan, David
author_sort Moreau, Ludovic
title Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice
title_short Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice
title_full Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice
title_fullStr Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice
title_full_unstemmed Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice
title_sort accurate estimations of sea-ice thickness and elastic properties from seismic noise recorded with a minimal number of geophones: from thin landfast ice to thick pack ice
publisher HAL CCSD
publishDate 2020
url https://insu.hal.science/insu-03594474
https://insu.hal.science/insu-03594474/document
https://insu.hal.science/insu-03594474/file/JGR%20Oceans%20-%202020%20-%20Moreau%20-%20Accurate%20Estimations%20of%20Sea%25E2%2580%2590Ice%20Thickness%20and%20Elastic%20Properties%20From%20Seismic%20Noise%20Recorded.pdf
https://doi.org/10.1029/2020JC016492
genre Arctic Ocean
Sea ice
Svalbard
genre_facet Arctic Ocean
Sea ice
Svalbard
op_source ISSN: 2169-9275
EISSN: 2169-9291
Journal of Geophysical Research. Oceans
https://insu.hal.science/insu-03594474
Journal of Geophysical Research. Oceans, 2020, 125, pp.2141-2167. ⟨10.1029/2020JC016492⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2020JC016492
insu-03594474
https://insu.hal.science/insu-03594474
https://insu.hal.science/insu-03594474/document
https://insu.hal.science/insu-03594474/file/JGR%20Oceans%20-%202020%20-%20Moreau%20-%20Accurate%20Estimations%20of%20Sea%25E2%2580%2590Ice%20Thickness%20and%20Elastic%20Properties%20From%20Seismic%20Noise%20Recorded.pdf
BIBCODE: 2020JGRC.12516492M
doi:10.1029/2020JC016492
op_rights http://hal.archives-ouvertes.fr/licences/copyright/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2020JC016492
container_title Journal of Geophysical Research: Oceans
container_volume 125
container_issue 11
_version_ 1796938047309217792